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ABSTRACT

This report documents efforts under ONR grant no. N00014-94-1-0676. This is an AASERT
award attached to parent grant NRL no. N00014-93-1-G022. The purpose of the grant is to
support research on how group dynamics can emerge from collections of agents that would
enable them to make decisions that individuals could not or accomplish tasks that individuals
could not.

Funding from the grant supported four graduate students directly; i.e., with stipends and
tuition, and a number of undergraduate students indirectly, through materials and supplies
purchases to support their independent study efforts in distributed intelligence and cooperative
robotics.

Results of these studies indicate that among distributed/cooperative learning methods, the most
promising and appropriate for distributed mobile agent applications is a combination of
learning and behavioral methods. In particular, the recommended method combines the data
structures and execution cycle of the learning classifier system with reinforcement computed
similarly to Q-learning and with some stochastic selection and genetics-based rule-paring
methods. These systems, in conjunction with message-based communications between agents,
is shown to be widely applicable and convergent in ideal scenarios. The methods have the
disadvantages of being slow, and they do not perform well in sequential learning tasks without
significant modifications.
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Overview

The purpose of the parent grant for this AASERT award was to examine methods for the
coordination of intelligent agents by modeling them individually as dynamic subsystems. The
problem spaces as a whole then represented a larger space into which the agents were
embedded. The agents would couple to each other in ways that would result in the effective
emergence of a single collective group dynamic which is, in a mathematically analytical
manner, a composite system integrally dependent on each subsystem (agent). The agents’ own
perception of the coupling signals would therefore represent knowledge of the state of the
population as a whole. The problem addressed by this research was the mechanism by which
such coupling signals could be implemented, the information content of such signals, and the
behaviors and decisions that could thereby be effected.

The original approach to this problem, as supported under the parent grant, was to encode
signals and behavioral cues into the wave characteristics of coupled nonlinear oscillations.
This model was inspired by biological systems, such as those that control circadian rhythms,
locomotory systems, and learned responses to sensory stimuli. Because this parent grant was
terminated prematurely in the first year, this original approach was broadened under the
AASERT award to befit more general application domains, while still limiting the studies to
distributed AI and decision theories for multiple agents.

Student Projects Supported

This AASERT award funded tuition and stipends for four graduate students, who together
completed three M.S. degrees and is soon to result in one Ph.D,, all in electrical engineering.
In addition, the material and supply budget provided by the grant was used to purchase
electronic components and software used by undergraduate independent study students in a
supporting role. These students assisted the graduate students in hardware experiments,
software simulation, and proof of concept projects. Such projects included the construction of
radio-frequency coupling transceivers, small robotic platforms, and software modules for the
implementation of the devised learning and coordination techniques.

Subsequent sections contain the thesis abstracts of each student. Following these are copies of
conference and journal publications authored or co-authored by these students.

“Architecture Design and Simulation for Distributed Learning Classifier Systems,” M.S.
thesis by Douglas G. Gaff, 1995.

Abstract: In this thesis, we introduce the Distributed Learning Classifier system (DLCS) as a
novel extension of J. H. Holland’s standard learning classifier system. While the standard LCS
offers effective real-time control and learning, one of its limitations is that it does not provide a
mechanism for allowing communication between LCS agents in a multiple-agent scenario.
Often multiple-agents are used to solve large tasks collectively by subdividing the task into
~ smaller parts. Multiple agents can also be used to solve a task in parallel so that a solution can
be arrived at more rapidly. With the DLCS, we introduce mechanisms that satisfy both of
these cases, while still providing compatible operation with the LCS.




We introduce three types of messages that can be passed between DLCS agents. The first, the
classifier message, allows agents to share learned information with one another, thereby
helping agents benefit from each other’s successes. The second, the action message, allows
agents to “talk” to one another. The third, the bucket brigade algorithm payoff message,
extends the chain rewarding payoff scheme of the standard LCS to multiple DLCS agents.

Finally, we present some simulation results for both the standard LCS and the DLCS. Our
LCS simulations examine some of the important aspects of learning classifier system operation,
as well as illustrate some of the shortcomings. The DLCS simulations justify the distributed
architecture and suggest future directions for achieving learning among multiple agents.

[Comments: Mr. Gaff's research is the first known distributed system adaptation of the LCS.
The resulting paper (see Appendix) was well-received. The results, though, served to illustrate
limitations in the learning performance of the LCS that was to be addressed in the next M S.
thesis project to be supported. Mr. Gaff is currently a senior software engineering for Spatial
Positioning Systems, Inc., of Reston, VA ]

“4 Distributed Q-learning Classifier System for Tack Decomposition in Real Robot Learning
Problems,” M.S. thesis by Kevin L. Chapman, 1996.

Abstract: A distributed reinforcement-learning system is designed and implemented on a
mobile robot for the study of complex task decomposition in real robot learning environments.
The distributed Q-learning Classifier System (DQLCS) is evolved from the standard Learning
Classifier System (LCS) proposed by J. H. Holland. Two of the limitations of the standard
LCS are its monolithic nature and its complex apportionment of credit scheme, the bucket
brigade algorithm (BBA). The DQLCS addresses both of these problems as well as the
inherent difficulties faced by learning systems operating in real environments.

We introduce Q-learning as the apportionment of credit component of the DQLCS, and we
develop a distributed learning architecture to facilitate complex task decomposition. Based
upon dynamic programming, the Q-learning update equation is derived and its advantages over
the complex BBA are discussed. The distributed architecture is implemented to provide for
faster learning by allowing the system to effectively decrease the size of the problem space it
must explore.

Holistic and monolithic shaping approaches are used to distribute reward among the learning
modules of the DQLCS in a variety of real robot learning environments. The results of these
experiments support the DQLCS as a useful reinforcement learning paradigm and suggest
future areas of study in distributed learning systems.

[Comments: Though not fully reflected in the abstract, the primary contributions of Mr.
Chapman’s thesis are in the decomposition of sequential learning tasks and their
implementation on robotic hardware. It is in robot learning and sensor fusion that a novel
application soon presented itself, although the solutions methods were to eventually differ (see
below). Mr. Chapman is now a software engineer for the Intelligent Decision Support Systems
Group at Raytheon E-Systems Corporation in Falls Church Virginia.]




“A Fuzzy Logic Solution for Navigation of the Subsurface Explorer Planetary Exploration
Robot,” M.S. thesis by Veronica A. Gauss, 1997.

Abstract: An unsupervised fuzzy logic navigation algorithm is designed and implemented in
simulation for the Subsurface Explorer planetary exploration robot. The robot is intended for
the subterranean exploration of Mars, and will be equipped with acoustic sensing for detecting
obstacles. Measurements of obstacle distance and direction are anticipated to be imprecise
however, since the performance of acoustic sensors is degraded in underground environments.
Fuzzy logic is a satisfactory means of addressing imprecision in plant characteristics, and has
been implemented in a variety of autonomous vehicle navigation applications. However, most
fuzzy logic algorithms that perform well in unknown environments have large rule-bases or use
complex methods for tuning fuzzy membership functions and rules. These qualities make them
too computationally intensive to be used for planetary exploration robots like SSX.

In this thesis, we introduce an unsupervised fuzzy logic algorithm that can determine a
trajectory for the SSX through unknown environments. This algorithm uses a combination of
simple fusion of robot behaviors and self-tuning membership functions to determine robot
navigation without resorting to the degree of complexity of previous fuzzy logic algorithms.

Finally, we present some simulation results that demonstrate the practicality of our algorithm in
navigating indifferent environments. The simulations justify the use of our fuzzy logic
technique, and suggest future areas of research for fuzzy logic navigation algorithms.

[Comments: Ms. Gauss had previously worked for the NASA Jet Propulsion Laboratory in
the Mars Pathfinder program. The subsurface explorer seemed a suitable platform for
application of distributed learning methods, and also provided the possibility to leverage any
successful results into future research. However, she was given complete freedom to explore
and determine the most feasible and appropriate control method for the SSX, and based on
significant comparative studies, chose the fuzzy controller described. Fuzzy controllers,
though, show little promise for distributed applications. Ms. Gauss is now a software engineer
at Computer Motion, Inc., of Goleta, CA. Computer Motion makes robots for surgical
applications]

“O-learning in a Production Rule System for Applications to Control Systems,” tentative title
for Ph.D. thesis by Paul J. Johnson, 1997.

Tentative Abstract: The Learning Classifier System (LCS), originally proposed by John
Holland in 1986, combines credit assignment (i.e. reinforcement learning) and rule discovery
into an adaptive, message-passing, production rule system (PRS) capable of learning how to
both plan and react in response to sensory inputs. While the LCS shows great promise in
principle, it has not been very successful in control system applications, most likely due to its
method of credit assignment: the Bucket Brigade Algorithm.

To improve the performance of Holland’s original LCS in control system applications, this
thesis proposes the use of Q-learning as a replacement for the credit assignment component of
the LCS. The resulting system, termed the Q-learning Production Rule System (QPRS),
maintains a rule discovery mechanism to complement the reinforcement learning capabilities
associated with Q-learning. The QPRS requires minor modifications to the LCS rule discovery




mechanism to account for the new reinforcement learning component. Likewise, the Q-
learning algorithm has been modified slightly from its original form to function within the
overall structure of the QPRS.

Q-learning is used within the QPRS as a reinforcement learning mechanism, but it is equally
valid to consider Q-learning to be a form of recursive dynamic programming. In this sense, Q-
learning can be susceptible to the same problems that plague dynamic programming. One such
problem is the curse of dimensionality. As the name suggests, as the number of discrete state-
action pairs increases, full enumeration of all state-action possibilities can require prohibitive
computing resources. However, when Q-learning is combined with rule discovery in the
QPRS, this curse of dimensionality can be attenuated. By providing the QPRS with the
capabilities to discover previously untested state-action pairs, it is not necessary to fully
enumerate the entire state-action space throughout all time.

When the states and/or actions are continuous variables, as is usually the case in control system
problems, some form of quantization must first take place. The concept of full state
enumeration has a slightly different meaning when the state-action pairs are quantized versions
of continuous variables. It is up to the designer to choose the level of quantization. This
level of quantization will directly affect the problems associated with the curse of
dimensionality. There is a tradeoff between increasing the resolution (finer quantization) and
making the problem more computationally intensive. This tradeoff leads directly to one of the
biggest changes we have introduced to the QPRS. We have modified the Q-learning algorithm
within the QPRS to incorporate interpolation in the Q-value update equations. We make use
of our dynamic programming analogy to create a better PRS by extending its interpolation
algorithm to learning systems. Interpolation allows for a finer degree of response from a given
level of quantization. This eliminates the need to more finely quantize a given variable.

The ties between DP and control systems suggest meaningful cost functions and specific ways
to change cost functions to elicit desired responses. This is not the case with the BBA, nor
with other “ad hoc” cost functions. There is a long history behind DP, and we wish to use this
experience to develop cost functions to use with Q-learning in our QPRS. The use of a
modified form of Q-learning has provided the QPRS with the capabilities needed for successful
application to control system problems. With the development of the QPRS, a new tool now
exists for adaptive optimal control in the absence of plant/model information.

[Comments: This study focused on the predictive study of the underlying dynamics of
classifier-like systems and systems with Q-learning-like reinforcement methods. It provides a
more analytical framework for the study of learning system convergence. Paul Johnson has
finished his research on this topic and has only to complete and defend his dissertation. He is
now a research engineer for Raytheon Corporation in Massachusetts. ]

Appendix

Attached are copies‘ of papers authored or co-authored by students supported directly and
indirectly by project funds, and papers for which the undergraduate students provided
laboratory assistance. Additional papers will appear in the future.
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A Reactive Coordination Scheme

for a Many-Robot System

Kimberly Skarman Evans. Cem Unsal, Memder, [EZZ, and John b Bay. Senior Memeer [EEE

Aébstract— This paper presents a novel approach for coordi-
nating a1 homogeneous system of mobile robots using implicit
communication in the form of broadcasts. The broadcast-based
coordination scheme was developed for the Army Ant swarm—a
system of small, relatively inexpensive mobile robots that can
accomplish complex tasks by cooperating as a team. The primary
drawback. however, of the Army Ant system is that the absence
of a central supervisor poses difficulty in the coordination and
control of the agents. Our coordination scheme provides a global
“zroup dynamic’’ that controls the actions of each robot using
only local interactions. Coordination of the swarm is achieved
with signals we calf “heartbeats.” Each dgent broadcasts a unique
heartbeat and responds to the-collective behavior of all other
heartheats. We genérate heartbeats with van der Pol oscillators.
In this application, we use the known properties of coupled van
der Pol oscillators to create predictable group behavior. Some of
the properties and behaviors of coupled van der Pol oscillators
are discussed in detail. YWe emphasize the use of this scheme to
allow agents to simultaneously perform an action such as lifting,
steering, ot changing speed. The results of experiments performed
on three actual heartbeat circuits are presented and the behavior
of the realized system is compared to simulated resuits. We also
demonstrate the application of the coordination scheme to global
speed control.

[. INTROZUCTION

\ /T OBILE robots are increasingly being considered for
N' industrial, military, and scientific applications. Much
or the robotics research to date has focused on improving
:he sophisucation of individual robot: @ accomelish more de-
manding and complex tasks. We propose that many tasks, such
s large materal handling problems. are best achieved using
2 rg aumoers of czlativeiy unintetligent robots. Typically. a

istnbutad approach is more desirable in such a scenario since
:ne communications overhead necessary for central control is
crohipitive for large svstems of mobile robots, or swarms.

Ve {urther suggest that homogeneous swarms. which are
composed of similar robots, have many advantages over
neterogeneous systems. The goal of the Army Ane Project (2],

Manuseript recsived January 2. 1995: revised Feoruary 14, 1996 and
June 14, 1996. This paper is based upon work supported in part by the
Naval Rssearch Laboratory undar Grant NOOO1£-93-1-G022. Offics of Naval
Research under Graat NOO14-94-1-0676, and the National Scieace Foundation
under Grant [R1-9202423. Tre content of this paper does not necessanly refdect
2 zosition or zolicy of the United States Government.
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(18]. [19] is to develop a homogenzous svsiem of autonomous
mebile robots with the following characerstics:

The Ammy Ant system is moduiar, so that agears are

interchangeable. Since any agent can assume the role of

any failed teammate. the system is immune to the single
point failures that plague heterogeneous systems whers
a failure in the chain of command can result in svstem
fatlure. The failure of one, or even several. army ants will
not adversely atfect the perfornance of the swarm. The
innate robusmess of the Ammy Ant swarm is perhaps the
most critical result of homogeneity.

+ The Army Ant swamm is more dvnamic than a het-
erogeneous system in that it may divide into smaller
groups when fewer agents are required for a task. There
is never a risk of incomplete hierarchies. Furthermore.
homogeneous systems, because they typically do not
use centralized control methods, can accommodate large
numbers of agents.

+ Ammy ants are paysically small and relatively unsophis-
ticatad. The simplicity or the aats. combined with the
features discussed above. will allow them to be mass
produced fairly inexpensively. The inteation is to crzate
a system thac can tolerate the loss of a few robots. coth
in terms of cost and system performances. A possibie
drawback of homogensity is the possibilicy of agzants
being overqualified for a job. but the robustness of the
system more than compensates for this cost.

Ammy ant agears are completely autonomous and have no
a priort information about their environment. Their behavior
is reactve in that individual agents respond w0 stmuli in
the form of sensory inputs. This tvpe of behavior. known
as sensor driven behavior, otfers grsater flexipilicy 0 cope
with changing environments. Unlike c2ntralized, planner based
approaches, wherein robots expend resources gathering and
processing information, a reactive approach allows rodots to
respond quickly to changes in the environment. :

Sensor driven behavior is consistent with a distributed
control approach. An agent’s control algorithm determines an
action based on the local information that dows from sensory
inputs. Group behavior is achieved through the simple actions
of many unintelligent agents. For example. an agent is arracte
to a payload destination by receiving an infrared signal from
a beacon that is placed at the proper location. Each agent
responds independendy to the beacon, but the actions of ¢acil
individual result in the group of agents gathering at the beacon.

The fexibie natre the Army Anc swarm lends itself to
many different applications. Army ants are well suited for
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Givision of labor such as
‘Our approach is appropriate o teams of unskilled laborers
with lictle differentiation of responsibilities. It is not a valid
‘sroposition where thers is no sconomy of scale. where a few

HARMAN EVANS or 2i: REACTIVE CC C\DI\-\T'O\ SCHEME

nuclear power
the

:azardous operations such s ming sxwepmg.
sianr maintenance work and mili@ary ap p cations, whar
2w ironment s unsafe for Aumans. and the risk facter s 1o
aich to utilize expensive. highly spec x‘hzef4 robots.

The Ammy Ant approach is not intended to be the answer
‘0 all autonomous robot applications. However, the fact that
~0t 21l rovotic masks require hignly intelligent agents and that
1 zroup Of seif-organizing agents can 2xhibit a higher-level
~enavior/inteiligence emerging as a result of agent interactions.
makes this aporouch atractive. It is obvious that Ammy Ant
qo¢ epprapriate for 2sKs requiring specialized
ssembling a compiex machire.

Focols are

inteiligent agents are far better than a swarm of “unintelligeat”

ageats.

A. Cooperative Behavior

The ability of the Army Ant swarm [0 accomplish complex
zoals relies upon implicic cooperation between individual
ageats. It is essential to distinguish betwesn expiicit and im-
siicit cooperation when describing the behavior of a system of
mobile robots. Mataric {16] detines explicic cooperation 1s “a
set of interactions between agents which involve exchanging

- infocmation or oerrormmv actions in order to help other agents

achisve their goals.” In contrast. implicit cooperation consists
of “actions that are a part of the ageat's own goal- -achisving
penavior, although they may have effacts in the world that
help other agents achieve their goals.”

“We recognize implicir cooperation as the tvpe of interaction
found guite frequently in nawral syseems. [nsects are not
aitruistic. vet colonies of insects collectively accomplish goals
such as transporting food and building structures {3], {91, (121
\Varous studies of insects have shown that colonies operate n
1 distdibuted fashion. where individual insects follow a few
simple rules. Likewise. simple interactions between relatively
unintziligenr army ants will croduce rather complex system
tenavior. Beni and Wang {-!-] refer to this phenomenon 2s

swarm incelligence.

Although both explicit and implicit communications may
complement each other, as suggested by several researchers
(1], (12}, use of explicit communications has its problems in
a swarm of the size envisioned by our approach. Bandwidth
issuss is one, as well as the need to “address” the agents.
which will cause the swarm to lose its homogeneity. Explicit
communications also adds to cost and complexity. These are
two important issues we want (0 avoid in our scenario. It
has seen shown that “decentralized control without explicit
communication can be used in performing cooperative tasks
requiring a collective behavior” (12}.

There are many instances when agents must not just coop-

1¢2. but do 50O in a coordinated manner. While to cooperate
maans 0 work toward a common goal, to coordinare means
10 Jerrorm 1 common action or movement in a harmonized
—anner. in the matedal transport example, agents may have t0
lifz a pailzt simultaneousiy so that the payload stays level; also.

/ envirecnment
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Fig. 1. Group dynamics in the Army Ant scenario.

transporting the payload is a much easier task when agsnts
stzer together. Various agent actions may, at some time or
another. have to be performed synchronously. In this paper
we present a broadcast-based coordination scheme that allows
us to achieve multi-agent coordination without programming
the behavior.

B. Swarm Coordination

Homogeneous systems of agents. by natwre. lack a coatrol
structure for coordination. There exists ao hierarchy of com-
mand by which lower ranked ageats fotlow the actions of their
superiors. For a many agsnt system. explicit message passing
is likely to create a communication bottleneck. Only indirect
communication. in the form of broadcasts ot cues. offers a
practical solution to the swarm coordination problem.

We define a cue as a prompt that a robot perceives from
its environment. A droadcast consists of information that is
transmittad indiscriminately, so that all robots receive the
same information.! Using broadcast signals we show that we
can create a “group dynamic” that all agsnts can sense and
influence. but which does not reside in any individual.

As illustrated in Fig. 1. agents interact with their 2nvi-
ronment through sensors. actuators and broadcast signals.
However. they are not permitted to address each other: ad-
ditionally, the actions of an agent have no direct erfect on
other agants (or have explicit * ‘interpretation’).

The group dynamic is infuenced and generated by the ac-
tions of all the robots. but is dominated by none in particuiar. It
is sustained by the contribution of the population. [t influences
the behavior and decision of the robots, but allows the robots td
function with local sensing, short broadcast communications.
and no need for global information or maps. It has no power
of direct actuation, but guides robots’ behavior. like a group
conscience.

- The global dynamics of the system proposed will obviously
have nonlinear characteristics. The system must be adaptive
and sensitive to changes in individual “states” of the agents.
To achieve such a system, we propose the use of signals we call

~heartbeats,” of which each agent has at least one. and which
can respond to the cotlective behavior (or global dvnamics of
the environmentsystem) of all other robots’ heartbeats.
signal for

| Eor exampie, a locator beacon signal is a cue. while 2 robot’s s
elp is 2 broagcast.
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Dirferent scanarios where exclicit communications are com-
bided with the “heartbeats™ approach can also be considered
0 cbrain-more precise swarm coordination at the expensa of
cost and compiaxity. .—\gents may be given idantities saparat2
fom their heartbeats so that it would be possible 0 ask one to
um its feartbeat off 1 elect itseif a leader (see Section [I-A)
Or 2 group of agznts ceuld solicit another agent o join ia by
asking it to twm its heartbeat on.

Each agent broadcasts a unique primary heartbear and

rzsponds 1o the ~01lec.x‘-e benhavior of all other heartbears;
they do not use the heartbeats o identify or address one
another. We generate the sver-present, nardwired heartbeats
with nonlinear oscillator circuits cailed van der Pol oscillators.
The osciilators form a coupled network when each agent adds
components of others’ heartbeats 0 its own. Over a large
range of frequencies and coupling factors. coupled van der Pol
oscillators will syachronize their outputs (10]. This progerty
is known as frequency entrainment.*

Bay and Hemami [3] showed that coupled van der Pol
oscillators® could be used to modetl the central pattern gen-
eraters (CPG) that stimulate. 1imd commands used in human
walking and jumping. Cohen [6] used coupled oscillators to
modz| the swimming motion of the sea lamprey. His research
points to the plausioility that the swimming speed of a fish
is controlled by an initial alteration of the frequency of an
individual oscillator pair that results in all other oscillators
entraining to the new frequency. We use van der Pol oscillators
to mimic this type of behavior in our system of mobile robots.
Other researchers have realized that CPG's, which control
without central intelligence. hold wemendous potential for
robotics applications. Crisman and Ayers [7] have formed a
partnership to design a mobile robot suitable for operation in
shallow water. The sight-legged walking machine is pattemned
arter the American lobster, which is capable of walking in
any direction, including laterallv. Their CPG based controiler
coordinates and controls the robot’s moton.

We exploit the frequency entrainment progarty (0 develop a
zlobal group dynamic that adaptively controls and coordinates
1 swarm of agents. Because synchronizaton is an inhersnt
Jroperty of the coupied oscillators. we nesd not program the
oehavior. Synchronization occurs whenever agents “listen” 0
the heartbeats. While a more tradidonal approach such as
croadcasting digital information over an ethernet is an option,
it is a far more sopnisticated solution than the coordinaton
problem demands. Our coupled oscillator approach to the
coordination of a swarm of agents is a more “natural” and
simpiistic solution.

This “reactive broadcast”-type of communication enables
the swarm (0

* sense when agents are added or dropped from the group:

* naturally choose a group leader;

> Frequency entrainment is a phenomenon that occurs when a periodic force
aspiied 0 a system whose osciilation is free and seif excited. and the
f-excited osciilation fails into syncironizaton with the driving frequency

(u G ow

{
?
*van Jder Pot osciilators are wideiy used for eatrainment and bl'oiogxc:zl
Teceting tn zast literature. This fact and characteristics such as roousiness
ind sumpiicity motivated us to use VDP for our appiicadon.
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Fig. 2. Single van der Pol oscillator. (Coupling factors for 2 multipie

osciilator scheme are aiso siown.)

single agent, i.e.. any individual can effect a
the group behavior.

s react o as
change in

C. Hardware Goals

We show that our broadcast-based coordination scheme can
be used for multi-agent coordination in two ways. First, we
demonstrate the synchronization of thres agent heartbeats.
We do this by realizing thres van der Pol oscillators whose
signals we broadcast and receive using an FM communication
link. Our aim is to build an inexpensive hardwars system
whose performance closely matches simulated results. Next
we use the coupled, three oscillator necwork to develop 2
globai speed controller. We integrate one heartbeat circuit
into an army ant. while ailowing the other two circuits ©
operate as standalone (only one army ant was available for
this experiment). We show that when the heartbeats coupie,
the agenrs are commanded to travel at a common spead. By
increasing the coupling coefficients. we are able to erffect a
global increase in speed.

VDP oscillators will broadcast and receive heartbeats using
an inexpensive FM comumunication system. The FM link
introduces some distortion into the network of coupled oscilla-
tors, altening its behavior somewhat. However. the deviations
produced by coupling the system with FM do not adversely
arffect performance goals of our system.

II. Vanx DER PoL OSCII.LATORS

The nonlinear oscillators used in our distributed system are
described by the well-known van der Pol equation which is
used to describe an RLC circuit with a noalinear resistor,
or equivalendy, a mass-spring-damper systam with a position
dependent damping coerficient (17]

£ +u(p® -2t +wiz =0,

The block diagram in Fig. 2 shows the construction of a single
oscillator with p = —p = 1. It has two integrators, square-
law and multiplier nonlinearities, and a gain parameter w* that
corresponds. roughly, (o the squared frequency of oscillation.
Coupling is effected through the summing junction.

Other signals r; are coupled to oscillator i's signal =:
through a coupling coefficient Aij. which can be posidve
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. REACTIVE COORDINATION SCHEME

sitory). or negative (inhibitory) (sez also [3]). The absolutz
ue of 2 coupling factor. A. can range in value from O for
ccupling to 1.0 for full coupling.

The primary broadeast heartbeat is invariant in order o
yid confusion when task-specific roles are assumed. The
2mal signal(s) and any secondary broadcast signals may
modified by coupling tarms to affect the agent’s behavior.
» may use as many different signal channels (each coupled
Jdirfarent network topologies) as necessary to accomplish
¢ 7a5Kks. but we seek o Keep these to an absolute minimum
minimize complexity and force the issue of emergent
sperative dynamics.

Use of van der Poi Oscillators in a Mulri-Agent System

3v adjusting the coupiing coefficients betwesn oscilla-
u_ems it is possible o use van der Pol oscillators for
2reat purposes such as [eader selection and synchroniza-
.
i} Leader Selection: To implement our technique for leader
sction. we suggest that the oscillator frequency given to
:h agent would be chosen randomly at the factory. If the
cuencies vary continuously, then in all likelihood. each
:nt will have a unique frequency to differentiate itself.
cially if the team size is relatively small (2.g.. <10 in
JO_DULLMOG of 100 robots). Note that we still do not allow
agent to address another: the heartbeat frequencies are used
- discrimination rather than identification.
2) Sunchronizarion: Several phases (e.g.. pallet lifting,
ering or changing speed) of the Army Ant scenario require
i the agents act as a team. Therefore. they must somehow
ichronize their actions. The ageats implicitly formed a
:m when they coupled to the other’s broadcast. As a team.
sy form a fully-connected network. The coupled network
oscillators can entrain so that the internal heartbeats of
:h agent oscillate at the same frequency as its teammates’.
sardless (almost) of the original frequency assigned to it.
;Tue oositively-coupled network is known (o entrain 0 a
m'non frequency for a broad range of individual frequencies
\J‘ f13). Fig. 3 shows a simulation of four waves of dirferent
ninsic rrequencies entraining with all coupling coetficients
¢ 10 —N.3. Then. one of the agents stops “listening” (o
.mmates. thus becomes the leader. The entrained frequency
Ziffarant (higher) than any of the original frequencies. Note
o that entrainment requires the original frequencies to be
ssonably similar to one another,* although higher harmonic
trainment is possible [10].
Cntrainment t0 a common frequency is used as the synciro-
:ation technique. When entrainment is detected, the common
we may be used as a clock so that ensuing actions might
cerformed simultaneously thereafter. [f we need 0 elect
leadar that the others should follow (for example, when
-2ctional heading must be arbitrated), then that leader can
npiy <hange its own coupling coerficients to zero. so that
sscillates at its original frequency. while the others remain
t-zined. This results in a ser of waves that are entrained t0

-1'3 1o 0% ceviation from the median frequency is permussible in order
Jotain snudinment
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the leader, as opposed to being mutually entrained; however.
their phases may dirfer.

[II. COORDINATION SCHEME

We demonstrate multi-agent coordination by realizing thre2
heartbeat circuits and observing the entrainment behavior over
a wide range of coupling factors. To achieve wireless coupling
of the oscillators, we use an inexpensive FM communication
link. While our results reflect some phase distortion in the
received heartbeat signals, we show that the FM coupling does
not adversely affect the performance goals of our system.

A. Oscillator Realization

The oscillator shown in Fig. 2 represents a heartbeat circuit.
of which each agent has one. The input signals x; through
X, represent the heartbeats of all other agents whose signais
are within “hearing” range. The received signals are coupled
through a summing junction and added to the oscillator’s
fzedback path.

For our research we use a three oscillator model, in which
each heartbeat couples to two other heartbeac signals (Fig. +).
The heartbeat circuits are identical except thac each is assigned
a unique value tor the frequency parameter 2. For simplicity,
we choose p as unity. When u is large it is extremely difficult
10 predict the regions of entrainment for a coupled oscillator
aetwork. It has been shown theoretically that for small pu{<K1)
we can predict the regions of frequency enturainment for
a van der Pol oscillator excited by a driving frequency.
Simply stated. if the frequencies are not too different harmonic
entrainment will occur. In the case of harmonic entrainment
an oscillator synchronizes to the driving frequency. If the-
frequency separation is large, but the ratio of the frequencies
is in the neighborhood of an integer or a fraction, frequency
entrainment may still occur. The latter type of entrainment
is called higher-harmonic or subharmonic entrainment since
the oscillator entrains to a frequency that is a multiple or
supmultiple of the driving frequency [10]. When u is made
large the mathematical analysis of the van der Pol equation
becomes very complex. and we are unable to predict the
regions of entrainment. However, it has been shown through
analog simulations that two mumaily coupled van der Pot
oscillators exhibit stable limit cycie oscillation for values of 4
ranging from 0.1 to 1.0 [14]. Furthermore, our own simulations
have indicated that frequency entrainment occurs for large
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Oscillator 1

Oscillator 2 Oscillator

{2)

n
o

iz. 4 (ar Full and (D) ring couplings of three oscillators.

numbers of mutually coupled van der Pol oscillators when
uw = 1.0

While the oscillator realization is almost a straightforward
adapration of the block diagram. a direct synthesis of the
block diagram i Fig. 2 yields a'very low frequency oscillator
with a limited frequency range. Thus, we time scaled all the
oscillators by the same factor (x 1000) and used %7 {0 tune
each oscillator to a unique frequency.

B. Wireless Coupling

In choosing a communications medium o transmit agent
heartbeats. several criteria were considered. The coordination
schame requires a communication system that is inexpensive.
reliable. suitable for indoor or outdoor operation, and has rea-
sonable range. There are several options for low cost wireless
data links. For short range communication links. infrared and
ultrasound are two popular media, but to synchronize a large
swarm of agents spread out over a large area we nesd more
range than these media offer. The primary disadvantage, how-
ever., in using infrared or ulitrasonic communication links is that
their directional transmission beams cannot provide reliable
coupling. Object interference or an inability to mainain a line
of sight are likely to prevent two agents from keeping their
heartbeats lockad. Thus. an omnidirectional communication
link. such as an RF link. is most desirable for synchronizing
a group of agents through murual coupling.

In keeping with the Army Ant specificatons, a simple
and low cost RF communications link is used to couple the
oscillators. Oscillator signals are broadcast using miniature
runable FM transmitters. Portable digitally tuned FM radios
are used as recetvers.

The range of our broadcast system is dependent upon the
type of antenna used with the FM transmiters. The transmitters
have a range of up to 1/3 mi with a 12-in wire antenna.
but that range may be extended as much as 1 mi with
1 more sophisticated antenna. The system can be operated
continuously for approximately two days on 2 9 V barery.

C. Computer Control of Oscillator Parameters

To mainfain autonomy in our AMMy AnC agaas. we must
zive them the capability to contol their own oscillator pa-

Oscillator 1

Oscillator

Oscillator 2

(b)

rameters. Some aspects of swarm coordination require more
than just synchronization at a fixed frequency. The speed
controller to be discussed in Section IV relies on changes in
coupling strength to effect global changes in the speed at
which agents are commanded to travel. Thus, agents shail
be capable of changing their coupling strength, as well as
coupling or decoupling themselves from the heartseat and
varying their frequency parameters. We assume that each
agant can sense when to coupie or decouple its oscillators.
One obvious situation in which an agent would voluntarly
decouple itself from the network is when it detects that its
“health” is failing. For example, an agent’s battery voltage
can easily be monitorad, so when the battery discharges to
the point thac it can no longer support a critical load such
as the drve motors, the agent realizes its futility and takes
approprate action. Under normal circumstances, agents are
not permittad to change their pre-assigned frequencies. Yet in
the case that an agent detects a failure mode it can decrease its
frequency to avoid any possibility of being elected a leader.

To provide automatic parameter control we use a voitage
controlled amplifier interTaced to an up/down counier. Agents
increase or decrease their parameters by either counter up oc
down. When an agant wants to decouple from the network it
counts down compietely, producing a control voltage of zero
volts: consequently, incoming heartbeats are ““coupled” with a
cain of zero (i.e.. A;j = 0 for j # o).

D. Experimental Results

We simulated thres uncoupled oscillators with frequency
parameters w7 = 1.2.w3 = 1.3. and w3 = 1.4. Using the same
settings, we acquired data from the hardware implemented
oscillators and compared the results. Table I shows the oper-
ating frequencies for the simulated and acrual oscillators. The
operating frequencies of oscillator 1 and oscillator 2 matched
the simulation within 2.5%. Oscillator 3 diffared by 7.5% from
the simulation. These 2rrors could be made extremely low
if precision resistors are used in building the oscillators. and
gains are carefully wrimmed to the exact values. Keeping in
mind that a time scaling factor of 1000 was used, one s&s
that the frequency parameter rougnly detzrmines the oscillator
frequency as expected.
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TABLE [
OsCiLLater FREQUENCIES FOR THE SIMLLATID
AND ACTUAL THREE OSCILLATOR NITWORK

! iOscxilator Osctilator | Osciilator |
| 2 3

Freg. Parameter | ©,== 12 | w@a-=13 | ©4==1.4 |
Stmulated (Hz) | 1245 | 1301 | 1352
Acmd (Hzy | 1272 | 1329 | 1434
2 Oscillator 1

9 -

.8

7

frequency ratio

0.1 03 0.5 0.7 1
coupling factor

5. Ratio of entrained frequency to natural frequency wersus coupling
ar tor the simulated {A) and actuai (M) oscillacor 1{~= = 1.2},

Amplitude vs. Coupling Factor

amplitude (Vpp)
N ©
(8.} w o

N

—
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0.3 Qs Q.7 i
! couplirg factor

o
-

N2 rafer to the frequencies, wy, in Table I as the natural
suencies. [n the following experiments we use the ratio
‘ne antrained frequency to the nawral frequency as 2
is {or comparing actual and simulated results. First we
apare the results of our osciilator network, with coupling
:ctad by hardwired connections, to the simulated network.
measured the 2ntrained frequency and the signal amplitude
coupiing factors ranging from A = 0.1to A = 1.0. In each
2 all oscillators were set to the same coupling factor. In
. 3, which shows the entrained frequency versus coupling
:or. we see that the performance of the actual oscillator
natches the simulated results extremely weil, with the
‘ tation increasing slightly with increasing w?. Comparable
ults were obtained for oscillators 2 and 3. The amplitude
‘he 2ntrained frequency versus coupling factor is shown
ig. 5. Two trends are evident from our data: the ratio
2ntrained fraquency to natural frequency increases almost
:ariy 2s the coupling factor increases. while the ampiitude
'r2ases with increasing coupling suength.
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Fig. Ratio of 2atrained frequency © aawral frzquency versus cousiing

factor for ihe simuiated {a) ana actual (@) osciilator | using &M coupiing
! E oung
- AR '

t
il

PR

Amplitude vs. Coupling Factor

0.1 0.3 0.5 0.7 1
coupling {actor

Fig. 8. Ampiitude versus coupling factor for simulated (A) and acwal (m)
oscillatoes with FM.

Figs. 7 and 8 show the results for oscillator | when the same
experiments are repeated. but we use an FM link to coupie
the oscillators. Again. oscillators 2 and 3 behaved similarly
to oscillator 1. With FM coupling the oscillatocs entrained to
much lower frequencies than when a hardwired connection
was used. Additionally, the increase in coupling strength did
not have as much etfect on the oscillator amplitudes in the
FM coupled network. There is significant error between the
performance of simulated oscillators and the FM coupled
oscillators. but more importantly, the trends are still similar.
Just as important is that the behavior of the FM system
is consistent. The relationship between frequency ratio and
coupling factor is slightdy more linear for the simulated
oscillators. The frequency ratio verses coupling factor data
for the FM coupled oscillators looks similar to the simulated

results, but rises with a smaller slope. The error is greatest -
at the highest coupling factor. The amplitude data starts out’

with simulated and FM coupled oscillators matching very well
at low coupling, has the greatest error between A = 0.3 and
A = 0.5, and shows lictle error at higher coupling factors.

A large portion of the error in the FM data can be atributed
to the manner in which the data was acquired, rather than to
the FM system. When the heartbeat circuits were conneced to
the data acquisition board. the transmitters were as close as l
foot from each other. Unlike most miniature FM transmitters.
which have a 5 mW output power. our wansrmicers have 2 75
mW power output. While the higher output power affords 2
greater broadcast rangs. at close range there is considerable
interference berween devices. Distortion is noticeable in the
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Harowmred, coupling=.1, wi1=1.2, w2=1.3, w3=1.4

FM, coucling=.1, wi=1.2, w2=1.3, w3=1.4

[ SRR N

3 4 3k 4
-3 1 i 1 . 1 . L o . _4 L 1 H 2 1 L. L H
0.232 0.233 0.234 0.235 0.236 0.237 0.238 0.229 2.24 0.241 0.17 0.171 0.172 0173 0.174 Q.175 0Q.178 0.177 0.178
time (sec) . time (sec)
‘L .

9. Hardwired coupled osciiladr Tetwork entrained © 1472 Hz  Fig. 10. FM coupled oscillator network entrained to 145 Hz (A = 0.1).
1A = 0.1). Oscillators degin to entrain at 0.236 s,

) : i R Leader-Fallower, Leader: Osc 2,ccupling=.3
received heartbeat signals. so we expect the behavior of the 4 : i : : . . :
van der Pol oscillators to be atfected. In a scenario whers
agents are randomly distriouted rather than ciustered together. 3} .
there is less interference and the behavior of the FM coupled
system is likely to improve. 2 1

Also. the presence of the radio link can be modeled as a
complex system block in the oscillator diagram of Fig. 4. If
we neglect this block. we are neglecting a significant portion
of ¢the overall dynamics and yet we still expect the oscillators
:0 entrain as theoretically predicted.

Whiie amplitude distortion is a problem in AM systems, FM
systems are plagued bv phase distortion. The phase distortion
results when the phase relationship between the carrier and
the sidebands are altered {11]. Phase equalization networks
can be used to correct this problem. Of course a price is paid
for higher quality signal processing. One disadvantage or using
‘nexpensive off-the-shalf commuanications hardware is that cir-
cuit schematics and specifications are often unavailable. and it
is difficult to know exactly what type of perrormance o expect.
Nevertheless. our broadcast-based coordination scheme does
not demand a high quality FM link. We are more concemed
that the oscillators stay entrained and that the network behaves
accordingly to changss in coupling factor. than we are with
the specific entrainment frequency.

Figs. 9 and (0 show a three oscillator system entrained
0 a common frequency for a coupling factor of 0.1 using
soth hardwired and FM coupling. In the hardwired case we
captured the data as the oscillators moved from free oscillation
:o full entrainment. We ses that there is a bref transient that
sccurs between the time when the oscillators first couple undl
thev sattle to the entrained frequency. The transient was (00
‘cng in the FM case to display the transition in one frame.
Thus. the grapn shows the oscillators after they are fully
snerained. Fig. 11 shows the behavior of the network in 2
'azdar-follower configuration. We elect oscillator 2 as leader
and see that the leader does not change its behavior. but

it , ;
\ i 4
AR / |

-1

-2

3k 4

0.252 0.253 0.254 0.255 0.238 0.257 0.258 0.259 Q.25

time (sec)
Fig. 11, Leader-Foilower configuration with osciilator 2 (dashed line) as
leader .\ = 0.3). Osciilators entrain in frequency but not in phase.

the followers entrain to the leader’s frequency. Unlike in a
mutually coupled configuration. when oscillators entrain to a
leader their entrained frequencies are not in phase.

IV. GLOBAL SPEED CONTROL

Qur broadcast-based coordination scheme will be appiied. in
many cases. (o simultaneously initiate a common action within
a swarm of Army Ants. Used in this manner, the entrained
frequency serves only as a trigger: as long as all the agents’
heartbeats synchronize. their coupling strength is irreievant.
The global spesd conuoller requires two properties of mumaily
coupled van der Pol oscillators. To control agents’ speed we
require synchwonization benavior so thac all agents Tavel at
the same velocity. Also. we 2mpiov a property presented n
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4r -esuits from Section [II: the entrained fraquency incraasas
“most linearly with increasing coupling factor. Thus, we ezt
riopal changs in speed by changing the strangth ag which
sartbeats couple. o

The global speed controller application was chosen
smonstrate that our method could be used to trgger oth
2paviors. By detecting thresholds in dynamically eatrained
arizhles. practiczlly any behavior can be svmbolically irig-
2rad. Similariv, the same apgroach can be used to control
anv behaviors or dacisions. This also shows how 2 local
adividual) decision can affect a global change.

ln this section. we explain the importance of global spesd
ontzol to the Army Ant scenario. Then. using the three
sarth2at circuits we show how to implement the global
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seed control. We discuss the additional hardware required
y interface the heartoeat circuit to motor controller chips and
> the Army Ant's processor. the 63HC11 microcoatroller (2].
astly. with one heartbeat integrated into an army ant we use
1¢ global dvnamic created by the three heartbeats 0 control
¢ robot's speed. The performance of the speed controller is
valuated for several different coupling factors.

One situation where it is desirabie to have all agents moving
¢ the same velocity is when agents must cooperatively carry

paillet. Assuming that agents beneath a pallet can align
semsalves along the direction of motion (see {18]). we would
ke rthem to travel at a common speed while carrying the
vad. A pallet only rests on top of a group Of agents: it is not
igidly attached. In a group of agents that are not traveling at
uniform spesd. slower moving agents may eveatually lose
ontact with the pallet as faster agents carry It away.

While not as critical as the pallet carrying example. globai
pead control is userul for some ground maneuvers. Suppose
_group of agants must search a large area. Agents traveling at
~e same speed will cover roughly the same amount of ground
nd expend their resources at the same rate. The intention of
se Amyv Ant swarm is to accomplish goals cooperatively,
‘ith no one agent assuming a greater role than anotner. By
tercising speed control we can better maintain nomogeneity
i the level of activity of the swarm.

As we have previously discussed. an important charactenistic
f our coordination scheme is that it reacts giobally to local
fanges. If for some reason one agent in the heartbeat network
enses that it must decrease its spesd it will lower its coupling
irengtn. causing the entire heartbeat dynamic to oscillate ata
Jjower frequency. The global reaction of the network implies
nat if a group of agents is carrving a pallet toward an obstacle,
yaly a few agents in front need to detect the danger in order to
Jlude disaster. As soon as the few agents begin to slow, their

aaction will be sensed by the heartbeat dynamic and every
nemoer of the group will decrease its speed accordingly.

\. Hardware Implementation

To rsalize our global speed controller we need a way (©
ranster information from the heartbeats to the motor con-
soil2rs. We show that this is accomplished very easily using
) freguency-to-voitage converter. Also, we want the spezd

5 e affected only when the heartbeats are coupled. When
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heartbeats are oscillating freely agents are not considered to
b2 part of a collective and do not nesd o be coordinated.
1) Hearthear w0 Motor Controiler Inrermacz: Tag frst stags

PEN reuin A

of our infaTacs is A {r2quangy-io-vio
freGUency-1o-4y0ltace CONVarar ouinuis 4n 1nai0g woitage thal

—

is proportional w0 the frequency of th2 input signal 1he
cain. specifed in volts per Hz. is user derned 2v 2 2w
axtamal resistors and capacitors. Our motor coatroller chips
require a digital velocity command. Therefore. we aed 1o
insert an analog-to-digital converter betwezn the output of the
F/V converter and the motor controller. The motor controller
outputs a pulse width modulated signal to an H-oridge circuit.
which drives the motors. The 68HC 11 microcontroller includes
an analog-to-digital converter: so with only one additional
integrated circuit (the E/V converter) we can interiace a
heartbeat circuit to an army ant’s motor control hardware. The
interface provides a velocity command to the motor controller
that varies linearly with the heartbeat frequency of oscillation.

The question arises: How do we kesp the frequency of
uncoupled oscillators from influencing agents’ speed? The key
lies in the fact that, in a mutually coupled system of van
der Pol osciilators. the entrained frequency will always be
greater than any of the original free frequencies regardiess
of the coupling factor. Consequentdy, we can set A frequency
“trip point” that is slightly greater than any {ree trequency in
a network. Assuming that the frequency separation between
any two robot heartbeats is smail. the trip point can be fixed.
Our motor control algorithm issues a “do nothing™ command
when voltages at or below the voltage corresponding to the
frequency trip point are received from the F/V converter. An
output from the F/V converter that is above the trip point
indicates that the system has coupled. Only then does the
velocity command to the motor change proportionally with
the neartbeat frequency of oscillation.

Each army ant shall have the described interface betwesn 1ts
heartbeat circuit and its motor control eiectronics in an actual
scenario. In this experiment we use thres mutually coupled
heartbeats with only one heartbeat integrated to an army ant.
Thus. we 2cquire velocity data on only one agent. We have
already shown that the heartbeats will entrain to a common
frequency. Given that the trip points and frequency-to-voltage
gains are the same in every interrace, we can assume that the
slobal heartbeat dynamic etfects the same speed command in
all agents.

B. Experimental Results

The control of the Army Ant drive motors for this ex-
periment is open loop with respect to velocity, i.e.. we do
not utilize tachometers to provide feedback. Therefore. only
commanded signals are at our disposal. We choose to acquire
the motor veiocity command data to evaluate our zlobal
speed controller rather than the signals to the motors. The
motor drive signals are pulse width modulated. and not as
convenient a format. [n the first set of experiments we use
hardwired coupling. and observe the commanded spesd to the
agent's drive motors as its heartbeat transitons from fresly
oscillating to fuily entrained. We repgeat the experiment for
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TABLE I
P2EDICTED AND ACTUAL SPEED DaTa For Hazowired COUPLED SYSTEM
coupling |  entrained predicsad actual
factor frequency’ spesd sgeed
() (H2) (rom) (pm) |
05 | 1724 i 10.50 | 1045
0.3 ! 1950 11.38 PRS2
0.7 | 2136 13.00 | 12.99
threz different coupling factors: A = 0.3.A = 0.5. and
A = 0.7. As expected. the speed command increases with

incrzasing coupling strength.

Given the entrained frequency data collected in the last
section. and the conversion gains used in the speed controiler,
we can predict the speed commands for each coupling factor.’
Note that predicting the speed at which coupled agents will
travel is not a goal of the giobal speed control application. The
object of the spesd controller is o ensure that all ageats move
at a common speed, and that any ‘change in an individual's
spead will be redlected in every agent whose heartbeat is part
of the dynamic. The entrained frequency is dependent upon
the number of agents in the network. For large systems it may
be inconvenient to predict the speed. and impossible if the
number of agents is unknown. Besides, the Army Ant concept
does not support deterministic. centrally computed knowledge.

2t comparing the predicted speed to the data we acquired
provides a useful check to validate our controller.

Table [I shows the predicted spesds for the three coupling
factors based upon the entrained frequencies acquired in
Section Ifl. as well as the speed data collected in these
experiments. The fact that the predicted data maiches the
actual data so closely indicates that the frequency-to-voltage
conversion remains linear over a wide frequency range.

The same experiments were conducted using FM coupling.
While we can expect the entrained frequency to remain con-
siant for @ given coupling factor and a set number of agents
when hardwired coupling is used. this is not the case when
heartbeats are coupied through FM. Just as we experience
degress in the quaiity of reception on our FM radios. the
perrormance of our broadcast-based syvstem is subject to vary
somewhat with external interference. Therefore. it is not very
meaningrul o compare the predicted speed to the actual speed
in the FM case. We have already validated the speed conuoller
with our hardwired data, so we present the FM data in 2
slightly different manner. Using the speed data acquired with
FM coupling, we can work “backward” and estimate the
entrained frequencies. The entrained frequencies from these
experiments, when compared to the data from the hardwired
coupled system. provide an example of how the performance
of the FM system can deviate. Table [Tl summarizes the data
for three different coupling factors.

The error between the acquired speeds for the hardwired
and FM cases is under 5% for A = 0.3 and A = 0.5 and
under 10% for A = 0.7. The A/D output. which provides the
speed command to the motor controller chip, was acquired and

{Tre snurained frequency divided by the F/V' gain gives an analog voitage.
This voitage. when muitipiied by the maximum rpm (25 rpm) and divided by
ne maximum A/D voltage (3 V), provides the expected speed.
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TABLE T
SpEzD Data mRou FM CorrLed SYSTEM
| coupling | eamained |  encmined ‘ spesd !
| factor frequency i Fequancy |
! x | rardwired | Fi i M .
| 0.3 ! 1507 j 1674 DA T
| 0.2 | 15%0 | 1344 S g P
| 0.7 | 1823 | 1964 ! {191
harcwired, ccugiing=.5
15
14} :
13- 4
12+ 4
£
g
1f 3
10 J
gr 2
3 — ' ' :
0 1 2 3 4 5

time (sec)

Fig. 12. Global sgesd for a hardwired oscillator network wich 2 coupling
streagtn of A = 0.3,

converted to an rpm value in our software routine. Figs. 12
and 13 show plots of the commanded speed for cases in
which the heartbeats were coupled via hardwired connections
and FM. At an arbitrary time during the data acquisition the
oscillator receivers were wrmed on. The subsequent step in the
speed occurs as the syseem transitions from an uncoupled to
a coupled system. The level of the commanded speed of the
coupled sysiem is dependent upon the coupling factor used.
Notice that the graphed speeds are all integer values. All
velocity commands were truncated by the algorithm during
implementation. The veiocity data shown in Tables I and III
was ootained through examination of the raw output from the

We have shown that the heartbeat dynamic can easily
be applied as a global speed controller. To interface the
heartbeat circuit to an agent’s motor conirol hardware. only
one additional IC is required. The essence of the speed con-
troller interface. the frequency-to-voltage converter. exhibited
a highly linear response over a wide range of input frequencies.

The performance of the spesd controiler compared favorably
o predicted results. We showed that changes in coupling
strength produce the same directional trend in the commanded
velocity (0 an agenls drive motors. Additionally, we have
verified that the error introduced by coupling the system
through an FM communication link is at an acceptable level.
In short. our broadcast-based coordination scheme was suc-
cessfully and simply applied to one of the more compiex
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5 and/or the load distribution is even. Feadback gain factor Ay
» changes over time as & function of the output Of the force
sensor. Thersfore. e feedback gain of the each oscillator
4 changes according 0 e vertical forcs comroen2nl sensed by

trds

Using the incoming signals from other
sensor output. robots can determine the difference e; bertwesn
theirown sensor and the sensor of the “previous” roDOL (
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Giobal spead for an FM coupied oscitlator network with a coupling
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viors requiring coordination. The results attained in our
4 control experiments serve to reinforce our conrdence
‘he heartbeat concept is a viable method for coordinating
v actions within the Army Ant swarm.

V. OTHER APPLICATIONS/USE

se zpplications of coupled nonlinear osciilators in the
v Ant scenario are not limited to leader selection and
aronization. In this section we 2xplain the use of similar
‘latar schemas for error detection.

‘rror Detection in Distributed Load Bearing

5 lift and carrv 2 palletized load. Army Ant robots need
=t togather to establish a siable transportation mechanism.
tetnod for controtling the collective behavior of Army Ant
s for load transportation is descrived in {18]. [t is achieved
seiecung a leader. without direct communications. using
force sensors mounted at the point of contact with the
:t. The method described in (18] results in stable behavior
+¢ horizontal movement of agents under the pallet. The
~od described here differs in the type of-communication
i in (18], coupling is a physical force transmitted by the
oad: here. we use a broadcast signal which can be used
. no pnysical contact at all.
uring lifting and transportation of pallets it may be impor-
that the pallet be supported equally (to some degree) by
opots. [t is possible to detect this condition by comparing
:2nsed vertical force on ageats. However, since there is no
ral controller. this has to be done collectively. Assuming
‘ne robots under the pallet can receive signals from their
amates. they can form a ring or fully coupled network
ice tha f22dback gains of the oscillator are linear functions
~2 output of vertical force seasors (Fig. 4).
e sadition of a variable feedback gain to the osciilator
enables the robots to detect whether the pallet is level

average of all incoming signal in the full coupling case). [n
other words. the signal e; is a relative measurz o7 discrepancy
in force sensor outputs. Robots that detect a dirfzrence beyond
the predefined parameters can broadcast a svarning signai.
Transportation starts and continues as long as there is no robot
broadcasting a warmng signal caused by this or any other
problem.®

The error signal:e; = /\i'iri - T /\gj.L'j

jFEe

{In ring coupling, j = ¢ — L only).

In the following, the osciilators use rng coupling and all
coupling coefficients are set to —0.3. The feedback gains Aij
vary according to the linear mapping’ from internal sensor (o
gain. When all gains are approximately equal. entrainment is
reached after a time with frequencies in the range 0.8-1.2.
For our purpose, we set all oscillator frequencies %ol
However. the amplitude of the oscillations will ditfer from
agent o agent if the feedback gains are not the same. Each
agent is able to compare its output with the output signal of the
coupled teammate. [n addition, the ring configuration enables
each robot to detect the sensor output variations occurming in
any other teammate by comparing its sensor output only t© the
previous robot in the configuration. Because all such compar-
isons accumulate as coupling signals pass along the network.
the errors in feedback gains (force sensors) can be detected
by other oscillators. 2ven if they are not neardy. The robots
may adjust their oscillator fesdback gains by 2xerting more
of less force or by moving to more desirable spots—tnereby
equalizing vertical forces until oscillators agree

In full coupling, the sntrainment is much rfastar than in the
previous case because of the multiple affects on each agant.
The coupling coerficient is chosen smaller (~0.1) to reduce the
strength of incoming signals. The error signal is much smaller
in magnitude for a fully coupled network. For this reason.
in error detection applications, a ring coupled network may

be preferred. The difference between full and ring coupling

methods are summarized in Table [V.

It may be necessary to adjust the allowable ranges for
error signals so that problems may be detected regardless of
the number of agents. As long as the number of agents is
greater than four, the same parameters for allowable ranges
are likely to work for all cases. When additional oscillators
are successively added to the system, the change in the signal
levels is less and less significant. Addition of new oscillators t0
a ring network of eight oscillators does not have a perceivadle

30Of course. an expiicit communicauon method could be used (o detect
uneven load distribution at the 2xpease of added complexity and cost.

*\faximum and minimum values of the seasor output coresponds (0 g2UNS
1.3 and 0.7. respectively.
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TABLE IV
DiFFERENCES BETWzEN FULL AND RING COUPLING METHODS

Ring Coupling
filtered using [D

! | Full Coupling
communication | broadeast

vpe numbers
=0r sional:
levei reiatively low relatively high
propagation no yes
delay
coupling coef.s | ~).1 or less -03
enrainment fast siow
total number of agents must
additional rooots in a team "choose” another
requireraents must be known for | for coupling
averaging
purpases

erffect. Similar characteristics are observed in the period and
ampiitude of the entrained oscillators. Furthermore. a discrete
mapping function from sensor output to the feedback gain may
improve the detection of range violations.

[ simulation examples given, we changed the feedback zain
of only one agent. and ploued e;’s computed by all agents.
As shown in Fig. !4, ar least two agents are able w0 detect
[

one ageat is sufficient for the swarm to become aware Of the
problem: a large value of the magnitude of error signal (in one

fe2cback gains and eeror signais of Ave osciilators in {ull (10p) and ring (bottom; coupling (A = 1.1 for full. A = 0.2 for ring configuration).

or more agents) is an indication of uneven load distrioution.
The threshold value tor error detection is not the same for
coth coupling conngurations. Because the 2rror signal is much
smaller in magnitude for a fully coupled network. the threshold
value must be chosen accordingly.

The stability of the coupled osciilator system given hers
is a theoretically unproved issue. We are aware of no such
proof for our general oscillator circuitry. With the addition of
unmodeled RF circuit dynamics. such a proot is unlikely.

VI. CONCLUSION

Distributed multi-agent systems such as the army ants
offer new and promising possibilities in the application of
robotics to industry. Despite the many advantages inherent
to distributed robotics systems, they have traditionally been
very difficult to coordinate and control due to the absence
of a cenual supervisor or a hierarchy of command. Agents
in a distributed system must be capable of collectively ac-
complishing tasks using oniy locally sensed informaton and
lictle or no direct communication. Toward this goal, this paper
has introduced a broadcast-based coordination scheme that
provides a zlobal group dynamic that can control individual
agents. is influenced by all agents. but does not reside in any
agent.

Our scheme addresses many of the coordination probdlems
that exist in the Army Ant scenano without compromising

—ana ey
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ARMAN SVANS 21 . REACTIVE COORDINATICH STHEME

v of the project’s principles. In adherng to the princicies
nomogeneity and distributed control we maintain all of w2
nedts associated with the Amy Ant concaot

in the fully-coupled broadcast-based coordination scheme.
-ants are never addressed directly; all communication is indi-
e in ths form of broadeasts. Uniike direct communication
stams which require a larger bandwidth as the numeer of
-eats incraases, our method is completely scalable. The group
namic automatically adapts to changes in the number of
2nes in a coupled network. In fact. it rzacts only to the
meosite of all the coupled heartbear signals without rzgard
the number of heartbeats. As such. the scheme is ideaily
it2d for 2 dynamic swarm. wherein armmy ants adjust their
2 10 Mt the task at hand.

While our coordination scheme requires the assignment
"1 unique heartbeat frequency to each agent. we in no
1y violate agents’ homogeneiry. The heartbeats are never
ed for the purpose of identification. They can. however.
» used for discrimination during leader selection. We have
own that our scheme can be used to entrain agents to 2
ader’s fraquency. Yet, most of the proposed applications of
2 coordination scheme (e.g.. synchronized siesring, lifting.
:d speed control) only require entrainment to any <om-
on frequency. Furthermore. 2ach heartbeat can replace any
mer heartbeat in 2 coupled network. and the failure orf 2
sartbeat circuit results only in that particular agent being
-cludad from the coordination effort. Thus, our coordination
sthed preserves the innate robustness of the Ammy Ant

LRetert

Just as the Army Ant swarm is a reactive/behavior-based
‘stem. 30 too is the coordination scheme’s network of cou-
ed neartbears. The proposed method does not require any
asoning or clanning. Rather. we exploit the known properties
" coupied nonlinear oscillators to create the global group
mamic :hat coatrols agents’ actions. The dynamic naturally
acts 10 any changes in the nerwork: because the dynamic
asists of the composite signal of all heartbeats in a network,
is sensitive to variations in individual heartbeats. The
active nature of our scheme allows the army ants to respond
‘:i:':-:ly in a dynamic 2nvironment.

| The primary benefit of this research is that the broadcast-
ised coordination scheme was validated by the actual con-
cuction and testing of a system of heartbeat circuits. By
alizing the concept with actual hardware, we are forced to
roid making assumptions that may later prove impractical.
Hme of the results are summarized as follows:

+ The behavior of the realized heartbeats compared favor-
aoly to the predicated behavior that was obtained througn
simulation. An actual network of three heartbeats was
shown to entrain either to a leader frequency or to a com-
mon ‘requency over a wide range of coupling swengths.
in the presence of completely unmodeled transcetvers.

« 't is possible to broadcast and receive heartbeats using
= inexpensive FM communication system. The FM link
‘ntroduces some distortion into the network of coupled
oscillators. aitering its behavior somewhat. The devia-
w:ons sroduced by coupiing the system with FM do not
wdversely arfect performance goals of the system.

« The broadcast-based coordination scneme can be used

(o svachronize many actions such as lifting or stezdng.
it can also 52 appiizd 0 morz complex t2havior.
damonstrated in the giobai speed controllz
have demenstratad a simple controller that detecis when
an agenc is part of a global group dynumic then aflows the
dvnamic to control an agaat's spe2d. In this manner, uil
agants in a nerwork travel at the sume spead and incraase
or decrease their speed in accord.

« A proposed technigue for error detection was davisaed
which would allow ong robot to adapt its contribution
to better match that of its eammates. This automatic
error detection and correction acts as a regulating group
dynamic.

There are a few areas relating to the coordination of the

Army Ant swarm that require further research:

« Further investigation on the conditions under which
agents will be permitted to vary their heartbeat pa-
rameters. Algorithms for executing this logic must be
developed and tested.

+ The process of electing a leader deserves further consider-
ation. Although we want to avoid a fixed hierarchy, some
form of hierarchy in form of “temporary leaders” results.
Additionaily. we must investigate how to implement the
idea of selecting as leader the agent with the highest
heartbeat frequency with 2 minimum of communication
and complexity.

« The use of Al methods for adaptive coupling parameters
may prove useful. To create more robust and “intelligent”
system. genetic algorithms and classifier systems may
be used to realize a method for on-line computation of

ecassary coupling coerficients for a particular task and/or
sttuation.

r
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CALVIN: Winner of the Fourth Annual
Unmanned Ground Vehicle Design Competition

ABSTRACT

The Unmanned Ground Vehicle Competition is jointly
sponsored by the SAE, the Associauon for Unmanned Vehicle
Systems (AUVS), and Oakland University. College teams,
cormposed of both undergraduate and graduate students, build
autonomous vehucles that compete by navigating a 139 meter
outdoor obstacle course. The course, which includes a sand pit and
aramp, is defined by painted continuous or dashed boundary lines
ca grass and pavement. The obstacles are arbitrarily piaced, multi-
colored plastic-wrapped hay bales. The vehicles must be between
0.9 and 2.7 meters long and less than 1.5 meters wide. They must
e either electric-motor or combustion-engine driven and must
carty a 9 kilogram payload  All computational power, sensing and
conurcl equipment must be carried on board the vehicle. The
iechnoiogles employed are applicable in Inteiligent Transportation
Systerns (ITS).

A vwnuen design report and an oral presentation are required
from wach team, and expert judges evaluate these along with
nspectmg the actual vehicles. Design judging focuses primarily on
the design process rather than the implementation of that design in
the actual vehicle. The laner feature is evaluated by performance
on e obstacle course. The team winning the design contest
recsives a $1000 award from SAE and is offered the opportunity
to present thewr design paper at the SAE World Congress. The
1996 competition was held at Walt Disney World in Orlando on
July 13-13.

This paper presents the conceptual design of the vehicle and
1ts compenents. [nnovatve aspects of the design are highlighted,
1long wth descriptions of the electronics, software, computers,
WA, sensors, and the means of system integration. The steps
followed :xthe design process are described along with the use of
computer-uded design. Considerations of safety, reliability, and
durability are included. The analyses leading to the predicted
performanceof the vehicle (speed, ramp climbing, reaction times,
stc.) are alsd dacumented.  Although not a factor in judging, the
£apeT also urindes 3 con etimate (not counting student labor) for
the rinal product i it were @ be duplicated.

INTRODUCTION

CALVIN (Computenized Autonomous Land Yehicie with
-atelligent Navigation), shown in Figure 1, is a battery powered

Matthew Caprio

University ¢f Texas

Susan Larkin
Lucent Technologias

_John Bay, Paul Johnson, Scott Wenger.
Christopher Johnson, and Charles Reinhoitz

Virginia Tecn

three-wheeled vehicle with a computer vision system for line
following and ultrasonic sensors for obstacle avoidance. CAL VTN
was one of two vehicles entered by the Virginia Tech Team 1n the
dth  Annual [nternational Autonomous Ground Vehicle
Competition.

Figure | : Overview photo of CALVIN

This is the first year that Virginia Tech has participated in the
competition. As part of our preparation, teamn members reviewed
technical papers written by recent competitors and video tapes
from the past two competitions. It became clear that the contest
presents a formidable task and that a robust, well-developed end
carcfully tested design would be a basic requirement for success.
With this in mind, the team made a concerted efort 1o pursue
simple, reliable, cost-effective designs for the base components and
subsystems. This is also the approach recommended by Gifford, et
al., [1995] as part of their winning philosophy in the 1995
competition. Keeping this approach in mind, CALVIN’s design
incorporates many of the features that have been used successtully
In recent competitions. For example, like several past entrants,
CALVIN is based on the chassis of a three-wheel golf cart

SAE Tax'l. (Zm)-/z,m, Zetrodt ML Fek /qcf7
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Althouzh tus pladorm s larzer than the ideal venicie. it does
provide a rugged, stable base with ample space for equipment and
nayload. Also following past successes, CALVIN uses a computer
vision system for line following and ultrasonic sensors for obstacle
avordance. The innovauve elements of the design can be found in
those areas that caused faiiure or were recogruzed as prodlems in
otherwise successful vehicles from past compeutions.  These
innovative features are discussed in detai later in this paper.

PROJECT ORGANIZATION

PROJECT TEAMS - As one cof the largest technical
universities w the counay, Yirgirua Tech tas a walented and diverse
student population from which to draw. Although many large
projects (swet as the SAE Mini-Bayaz and Solar Car) have been run
wn the pas:. LIS autonomous rodous project generated unparalleled
excitemnesztaraong students and dxculty. A small team of volunteers
oegan womIng to organize the project tn the summer of 1995, By
the fail semester, the combued team working together on the two
vefucles: tad grown o almest 50 students rom across the Colleges
of Eng.oweering and Arts and Science. To direct the efforts to build
CALVIX four separate grmups were formed to cover Mechanical
Desigy. Sensing & Canrol, Computer Vision, and Project
Organzation with each goup subdivided to distribute the work.
To faalitate group cormmurucauon, meetings were held twice a
week with monthly presaratons given by each group.

PROJECT TDMEL™XE - Organization and scheduling is a key
ingredient in the successof a project of thus scope and duration.
Although many wnterme:fiate objecuves have been achieved along
the wey, major project rrilestones are shown on the general project
tumeliae at the end of trepaper.

DESIGN PROCESS OVERVIEW

GENERAL DESIGN DESCRIPTION - The general overall
design of CALVIN will be descnibed with reference to the
photographs shown as Figures 2 and 3. Figure 2 shows a top view
of CALVIN with the weather-protective top cover removed. The
general layout of the base vehicle, along with a number of the
major components, are visible in this picture. These components
include the 24 volt dnve motor, timing-belt drive and differential:
the 12 volt linear steering actuator with integral feedback
potentiometer, the mucrocontroller; the on-board emergency step
(e-swops), the three 12-volt bageries and the antenna for emergency
stop and radio conuol when not in competiion. The
microcontroller and electronics mount to a hinged shelf that opens
to give access 0 the pentium-based PC and power supplies.
Figure 3 1s a font view of CALVIN that shows the fve
bumper-mounted ultrasonic sensors and the two side-viewing
cameras, along with some of the weatherproof Lexan used to
encase the vehicle.

DESIGN TOOLS - As with all aspects of our design, the tools
used in the creative process were dictated by the overall objective
of producing a safe, competitive vehicle. All Virginia Tech
engineenng students are trained in the use of either AutoCad or
Cadkey, and both were used extensively in the design process. The
uses of computer-aided design ranged from preparing a test course
layout with a shape simnilar to the sample course shown in the
contest rules, to detailed layout of the vehicle systems and
subsystems. As an example, AutoCad was used to produce a
layout (Figure 4) of the existing base frame of the golf cart
Attachments and modifications were then based on these drawings.
Other software used during the course of the project included

Figure 2: Top view photograph
2




Figure 3: Front view photograph

spreadsheets, TKSolver!, MathCad and Mathematica for general
mathematcal modeling and MatlLab for control and vibration
analysis. Specialized software was also written to aid with steering
kinemaucs and vision systemn modeling.

DESIGN CRITERIA (SAFETY, RELIABILITY AND
DURABILITY) - The most critical design criteria were those that
involved safety and those necessary to meet contest rules. Bevond
these fundamental requiraments, a continuing effort has been made
o incorporate reliability and durability into the final design. This
goal has been pursued both through the careful specification of
proven, reliabie components and through extensive field testing
during every phase of the design. In subsequent sections, bref
discussions will help to highlight the effort to produce an inherently
safe, reliable vehicle. Safety was also a top priority in all shop
work and during field testing.
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Figure 4: AutcCad Layout

FAIL-SAFE BRAKES - Acceptable braking performance was
assured by using the prumary components from the onginal
goif-cart braking system. The only difference is that the sctuating
force normally applied by the user through the foot pedal has been
replaced by a fail-safe input force from a pneumatic acruator, An
clecro-mechanical valve and relay system control the operation of
the pneurnatic actuator. While the vehicle is in operation, the main
power bus closes the relay, powering the valve, thus keeping the
brakes disengaged. When the circuit loses power, valve power 1s
lost and the brakes are engaged. This condition occurs when either
the onboard E-stop or the remote E-stop is acuvated.

STEERING ACTUATOR AND CONTROLLER - The rack-
and-pinion steering system on the original golf cart was replaced
with a 12-volt DC linear actustor with integrated position
feedback. The motor in this systern is controlled by a Pulse Width
Modulation (PWM) controller. The input signal to this controiler
can be generated by either the microcontroller, in autonomous
mode, or a radio control receiver in manual override mode.
Manual override mode is used for transportation of the vehicle.

DRIVE MOTOR AND CONTROLLER - CALVIN's primary
drive system uses a 0.746 kW, 24V DC motor with tachometer
feedback for precise velocity control. Power is deliversd to the
rear wheels through a 1.8 to 1 timing belt reducer and the existing
6 to 1 golf cart differential. The speed of this motor is controlled
using a PWM H-Bridge controller. The controller is capabie of
adjusting its PWM duty cycle so as to produce an effective
continuous output voltage from -24 to +24 volts and a current of
160 amps continuous and 320 amps peak. Like the steering
systern, the input aignal to the controller can be generated by either
the microcontroller with active velocity control, in autonomous
mode, or a radio control receiver in manual override mode.

ULTRASONIC AND TACTILE OBSTACLE SENSORS -
CALVIN is equipped with two types of sensors in order to
facilitate obstacle avoidance. First, a fan-shaped array of five
ultrasonic sensors is used to locate obstacles potentially in the
vehicle’s path. In the event that an uitrasonic sensor detects an
obstacle, an algorthim is run in order to determine how the
vehicle’s path should be changed. This routine considers the
vehicle’s distance to the obstacle, and which ultrasonic sensors in
the array detected the obstacle.

The tactile sensors consist of three push-bars on the front of
the vehicle. These sensors are used to indicate that the vehicle has
collided with an obstacle. In the event that a tactile sensor is
actuated, an interrupt routine immediately stops the vehicle and
performs a reverse maneuver. The reverse maneuver steers the
vehicle based upon which tactile sensor was actuated, in order 10
relocate the vehicle further from the obstacle. The vehicle thea
returns to normal operation and continues on its path around the
track. The uitrasonic and tactile sensor arrays can be seen in
Figure .

COMPUTER AND SOFTWARE - The vision system is
implemented using a pentiurn {00MHz PC and an FT'1 DSP Frame
Grabber from Current Technology, Inc. All vision algonthms were
developed using standard C and the frame grabber’s C libranes.
Standard C is also used to code and compile the software necessary
to communicate between the computer and the microcontroiler.




Figure 5: Ultrasonic and Tactile Sensor Arrays

The vision system is based on two cameras looking to the left
and right of the vehicle, but only one camera is active at a time.
When the active camera obtains a series of three consecutive poor
unages, the system switches to the view on the other side. Image
processing is performed on a view of the course directly adjacent
to the vehicle. Of this whole image, only two smaller regions of
interest (ROI) are considered to be significant.  All image
processing is then performed on these ROIs only, in order 0 save
computation ume. The frame grabber first thresholds the
Tey-scale camera image to convert the image to binary black and
wiite. The thresholding routine is dynarmucally adjusted for each
ROl o recognuze the white paint on grass as the brightest portion
of the image. This means that the ROI images used to navigate
constist of white line segments on an all-black background. The
vision code then uses these two ROI to detect a forward and a rear
sezment of the course line. In order to discern the line, the routine
3nds the grouped blobs which it extracts as a segment of the line.
The location of the cenwroids of these blobs are then compared to
those found when initializing the vehicle in the center of the course.
This informauon is used to determine the vehicle's distance and
angle relauve to the line defining the course. The superposition of
tis zeroth order and first order path information results in a
desired steering angle. This angle is then processed to be
ransmutted to the microcontroller.

The microcontroller integrates the desired steering angle
(based solely on vision) with information from the ultrasonic and
tactle sensors. Priority must be assigned to obstacles potentially
i the vehucle's path; therefore tactile and ultrasonic sensor
information is, in some cases, weighted more heavily than the
vision in determmuning the actual steerin g angle. Consequently, the
aucroconaoller combines the thres inputs to determine the path of
the vehicle. In effect, the microcontroller performs all onboard
navigauon.

SENSORS, ELECTRONIC LAYOUT AND SYSTEM
INTEGRATION - Figure 6 is a schematic diagram showing the
geoeral architecture and integration of the sensors, electronics and
comcuters used on-board CALVIN. Once an image has been
rrocsssed, the PC sends a steering angle to the microcontroiler via
3 senal connecuon. If the course boundary line is not clearly
ewecied by the vision system in several successive frames, the PC

also sends a command to the microcontroller to switch to the
second camera, and the vision system begins tracking the opposite
line. Ultrasonic signal processing as well as integration and direct
conwol functons are handled by the Motorola 68HC1]-based
mucrocontroiler. This microcontroller also exacutes closed-loop
control of the steering and drive motors using pulse-width-
modulated signals. A schematic layout of the battery connections
and power control elements is shown in Figure 7.

DESIGN PROBLEMS AND SOLUTIONS - Throughout the
design process for CALVIN, precise design tools and techniques
were used whenever possible. Occasionally, however, an event
would arise where trial-and-etror methods were necessary. The
first arose from the imprecise geometry of the base frame. Calvin
began as a golf cart, but came with no factory dimensions.
Measurements were made and CAD drawings constructed, but the
angles of the frame were difficult to accurately measure, and small
differences had a great effect on the positioning of integral parts.
This forced a trial-and-error technique on mounung the drive
motor, steering actuator and tachometer.

Electrical problems are also unavoidable on a vehicie with so
many components. Floating grounds and ground loops are primary
contributors to these difficulties. During the layout and wiring of
the vehicle, an effort was made to keep the wires as short and
organized as possible to facilitate quick troubleshooting. Sull care
had to be taken to reduce the interference in many of the electrical
components, most notably the cameras and the moaitors. To do
this, ground wires were consolidated, and shielded coaxial wire
was used when possible.

PERFORMANCE PREDICTIONS

BRAKING AND SPEED CONTROL - The most critical
performance issues were those that involved safety requirements
and meeting contest guidelines. Braking and speed conuol,
especially on an inclined surface, are obviously of great
importance. An earlier section of this paper describes the design
of the braking system and how the foot pedal input was replaced by
a pneumatic actuator. Acceptable performance was assured by
selecung an actuator that supplied the same brake cable tension as
a typical user would supply through the brake pedal 1n an
emergency condition (roughly S00N).

Accurate speed control is important for safe vehicle operation
and for assuring constant performance of the vehicie on sloped
surfaces. Several past contestants reportad control problems that
were directly artributed to speed variations. Velocity is controlled
on CALVIN using a tachometer attached directly to the output shaft
of the drive motor to provide a voltage signal proportional to
vehicle speed. This signal is fed back to the microcontroller, which
issues a pulse-width-modulated control signal to the motor driver.
By modeling the vehicle as a mass moving on a frictionless surface,
control system gains can be selected o give stable velocity control
with an adequate response time.

RAMP-CLIMBING CAPABILITIES AND SAND PIT
PERFORMANCE - Competition rules permit ramps or inclined
terrain to have a grade of up to fifteen percent. This information,
coupled with the 8.04 kavhr maximum allowed speed and the
vehicle’s esumated weight, can be used to directly compute the
minimum required power of the drive motor (since power equals
force muluplied by velocity in the direction of the force) A twenty
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Figure 6: Sensor and control integration

percent grade and a 8.04 kanv/hr vehicle speed produce a vertical
veiocity component of 1.61 kmvhr. Assuming a 1780 N vehicle
weight and no friction results in a required drive motor of about
0.746 kW. Recognizing that steep tnclines would be traversed at
1.61 karvhr or less, thus was taken to be & conservative estimate. A
0.746 kW contnuous, 1.49 kW peak, 24 volt DC drive motor was
seiected and purchased from a surplus catalog. Using a speed
reducuon of about 10:1 through a timing belt drive and the golf cart
diferental, the desired 8.04 kmvhr peak speed and ramp-climbing
ibility were achieved as predicted. Designing a vehicle to traverse
1 sand pit was a less precise prediction. Goodyear, who donated
the vehicle ures, provided assurances that these wide, soft tires
would perform well in sand and would not damage the grass
poruon of the course.

REACTION TDMES AND LINE-TRACKING
PERFORMANCE - With any digital control system, the faster the
~date speed of the controlier, the more stable the performance of
the conuolled device under rapidly changing conditions. The

computer vision and ultrasonic acquisition and computation
requirements obviously limit the overall update rate of the
conuroller. The icam antempted to partially address this issue
during conceptual design by separate, parailel processing of the
ultrasonuc and vision feedback. The vision feedback processing is
accomplished directly on the frame grabber card or in the host
Penuum 100 MHz personal computer. Operation of the ultrasonic
sensors and the associated processing are accomplished in the
Motorola 68HC 1 1-based microcontroller. This allows a maximum
update rate to the steering and drive motors of about 6 Hz. At peak
vehicle speed, this amounts 1 an update about once every 0.3 mof
travel. Through testing, this has been determined to be marginal
for robust line tracking; one or two bad images can result in the
vehicle traveling out of bounds. Nevertheless, within the constants
of the exising equipment, this is a reasonable update rate. At
compeation, we intended to run CALVIN at peak speeds of about
3.22 krwhr to maintain stable operation.
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 NNOVATIVE ASPECTS OF THE DESIGN

1 The design pulosophy used in developing CALVIN did not

-pecifically include innovauon as a design objective. Qur prmary
Djecuve was to design the most competilive possible vehicle
nder the constaints of the governing contest rules and limited
‘nancial resources. Nevertheless, the resulting design is believed
J be lnovauve in several sigruficant respects. In all cases,
owever, the innovative features are intended to address problems
r shorcomungs reported in similar vehicles from previous
ompeuuons.

A sumple example of this was the design of & system that uses
nly three [2-volt deep-cycle batteries as the source for all on-
oard power. Power for the PC and peripheral equipment was
upclied using an 400 Watt inverter to generate 120 volt AC
ower. Other DC power requirements were met through smail
n-board power supplies or through series connection of the
anenes. This power supply arrangement was previously shown as
igure 7. While this may seem to be a minor issue, a number of
revious teams, including the first-place 1995 Colorado team
Sifford, 1995], cited the maintenance of several dissimilar
alteries as a significant disadvantage. The University of West
rginia team also cited the weight penalty and potential danger
ssociated with therr eight- battery, 96-volt DC bus system [Banta,
$951.

A second, and more significant, innovatve feature of CALVIN
i the use of two independent cameras for line tracking This
novation is an attempt to address, in a cost-effective way, the
roblems noted by 1994 and 1995 competitors with singlecamera
vstems [Murphy, 1995, Gifford, et. al., 1995]. Originally, the
:am hoped 10 use two cameras and two independent frame
rapbers. With such a system, each camera could contnuously
ack one of the two course oundary lines. Unfortunately, two
ame grabber cards or a single multi-input frame grabber proved
) be 100 expensive, and an alternative innovative solution was
arsued. The end resuit was to use a simple relay-actuated video
¥itch to change camera views when the course boundary lines
:sappeared or became difficuit to detect. Using a line-integrity
1eck based on the size and grouping of white image areas, the
xmputer vision system makes three attempts to find a line with the
Trent camera. [ftwo successive attempts fail, the vision sottware
nds a command 1 the microcontroller to switch to the camera on
2 other side of the vehicle and begin tracking the opposite line.
ised on a video update rate of at least six frames per second (bad
1ages can onten be rejected quickly, resulting in a higher rate),
1d a maximum speed of 8.04kmvhr, the vehicle will travel no
rther than 0.244 m in this time.

A third innovative feature of CALVIN’s design is the use of
radio controller to generate the same PWM signals as the
icrocontroiler for the steering and drive motor controllers. This
.ows sumple switching between autonomous and manuai modes,
ruch gready facilitates vehicle setup and testing. During normat
yerauon, all user interaction with CALVIN is through the radio
ntroiler or through a single weather-resistant control panel
cunted on the left rear quarterpanet of the vehicle. This control
wnel is shown in Figure 8 below. While this is again a simple
ature, it 1s a clear improvement over the interfaces used by
‘aucles in previous competitions, many of which required
vikward interactions including manual pushing for placement and
up.

Figure 8: The control panel

A fourth innovative feature of CALVIN is the separation of
data processing berween the PC and the microcontroller. Since
data processing speed has historically limited other vehicies
maximum speeds {Cheok, 1994, Nagy et al., 1995], a system was
designed to process data in parallel. By processing closed-loop
velocity and steering control, as well as ultrasonic and tactile
sensor data on CALVIN’s microcontroller, the PC is used solely
for the computatonally intensive vision algorithms. This
separation of data processing greatly reduces the total processing
time, therefore increasing the maximum sustainable vehicle speed.

VEHICLE COST AND FUNDING SOURCES - The table
at the end of the paper lists the ready-made components that were
purchased or donated. Separate columns list both the retail cost
and the purchase price of the component Note that many items
were either donated or sold to the project team at a substantially
reduced cost.  Also note that all fabricated components, such as
mounting brackets, sensor housings, framework, bumper and the
Lexan outer shell, were buiit by members of the design team in the
student shop of the Mechanical Engineering Department. In
addition, team members did a great dea] of electronic design and
ctreuit fabricatton. [t is estimated that approximately 5000 persoa
hours have been invested in this project. This includes time spent
on activities such as project organization, fundraising, publicity,
and research.

COMPETITION RESULTS
The 1996 Unmanned Ground Vehicle competition heid at

Walt Disney World, Epcot Center July 13-15, was composed of
two sub-competitons. The first was the SAE Design Competition,

" which evaluated the written report, an oral presentation and a static

viewing for each vehicle.

The second competition was the cbstacle course race. All
vehicles were given three anempts at completing the course, and
the vehicle to complete the course in the shortest amount of ume,
or 10 proceed the furthest in any one run would be declared the
winner of this compettion.

Virginia Tech's CALVIN vehicle was declared the winner of
the SAE Design Competiticn. Virginia Tech’ s other vehicle,
BOB, scored third place in the SAE Design Competton. The

Ve e e




winner of the obstacle course race was Ohio State University's
vehicle. Virgina Tech’ s obstacle course race results were |3th
and 6th for CALVIN and BOB respecuvely.
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Part Name and Descrintion

|

Project Cost (S)

| Retail Cost(S)

Base Vehicle - Gas Powered E-Z Go golf cart (used) 500 500
Drive Train - 12 VDC 0.764 kw Thermo King Motor (surpius) 100 100
Drive Train Components (belts, puilevs. etc.) 75 75
Computer - Pentium 100 Mhz PC 1125 1125
DSP Frame Grabber (Current Technologies) donated 900
Motorola 68HC 1 |-based Microcontroller (Coactive Asthetics) 125 250
Assorted Electronic Components and Cables 150 1350
Polariod Ultrasonic Sensors (six) 350 350
Linear Actuator - 12 VDC 6" stroke (Motion Svstems) donated 300
2 Cameras & Lenses (DE[/ Professional Securitv Alliance) 400 1200
PWM Motor Controllers (VANTEC) 450 950
Ajuminum tor Frame and other structures (R.J. Revnolds) donated 200
Barteries (Sears) 150 300
Air Tank (Steei-Fab) donated 100
400 W Inverter (Tripp-Lite) donated 100
Lexan for Quter Shell (Piedmont Plastics) donated 350
TOTAL 3.425 6.950
Vehicle Cost Breakdown
May 1995 | Aug. 1995 | Oct. 1995 | Dec. 1995 | Jan. 1996 | Mar. 1996 May 1996 | July 1996
Autonomous . Golf cart 8ase vehicle Canceptual Spnng Computer Formation of Inter-team
Robotic acquired for operational design/frame semester vision and summer competition
Vehicle base vehicle | and prepared | modifications teams ultrasonic teams between
Project for completed organized sensors CALVIN and
Introduction Academic madification tested Systems 808
at Virginia year begins, Fail-safe System integration
Tech large project brake system | components Automatic ™ completed Oesign paper
team implemented ordered drive control subrmitted
Preliminary organized specified Testing and
design team Drive and subsequent | Departure for
assembled steering modification Epcot 7/12
systems begins
tested 4th Annual
UGR
competition
in Epcot

Project Timeline
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Navigation of an autonomous ground vehicle using the subsumption architecture
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ABSTRACT

The subsumption architecture is used to provide an autonomous vehicle with the means to stay within the
houndaries of a course while avoiding obstacles. A three-layered network has been devised incorporating computer
vision. ultrasonic ranging, and tactile sensing. The computer vision system operates at the lowest level of the
network to generate a preliminary vehicle heading based upon detected course boundaries. The network’s next
level performs long-range obstacle detection using an array of ultrasonic sensors. The range map created by these
sensors is used to augment the preliminary heading. At the highest level, tactile sensors are used for short-range
obstacle detection and serve as an emergency response to obstacle collisions. The computer vision subsystem is
implemented on a personal computer, while both ranging systems reside on a microcontroller. Sensor fusion
within a subsumption framework is also executed on the microcontroller. The resulting outputs of the subsumption
network are actuator commands to control steering and propulsion motors. The major contribution of this paper is
as a case study of the application of the subsumption architecture to the design of an autonomous ground vehicle.

Keywords: control systems, subsumption architecture, sensor fusion, autonomous vehicles, obstacle course
navigation. computer vision. ultrasonic ranging

1. INTRODUCTION

This paper describes the control system design issues encountered by the Virginia Tech Autonomous Vehicle Team
in its development of two autonomous ground vehicles. These vehicles were built for entry in the Fourth Annual
International Autonomous Ground Robotics Vehicle Competition, which was sponsored by the Association of
Unmanned Vehicle Systems International (AUVSI) and was held at the Epcot Center in Orlando, Florida on July
13-13, 1996. The goal of the competition was to have an unmanned ground vehicle navigate an outdoor obstacle
course roughly 500 teet long in no more than ten minutes, while obeying a speed limit of five miles per hour.
White and yellow lane markers were painted on the ground to define the course’s boundaries, while hay bales
served as obstacles ¥ 101,

Successtul obstacle course navigation requires the ability to detect course boundaries and obstacles, and then make
intelligent control decisions. While it would be possible to gather all needed boundary and obstacle information
using a single sensory device, such as a camera attached to a computer vision system, it is more likely that multiple
types of sensors would be used. This would allow the vehicle to utilize the abilities of very cffective, but highly
specific, sensory devices. The problem that then arises is that of combining these different sensing modalities into
a limited number of control signals. This is known as the sensor fusion problem >,

One solution to the sensor fusion problem can be found in the subsumption architecture " *. This architecture
decomposes a control problem into a collection of behaviors. Individual behavior modules are developed to process
sensory data so as to create a simple behavior, such as line following. Multiple modules, each with potendally
different sensory inputs, are then developed to produce additional behaviors. Through the use of a hierarchy,
outputs of some modules are allowed to subsume the outputs of other modules, thus creating a single actuator
command from multiple sensory inputs.

The focus of this paper is the use of the subsumption architecture to perform sensor fusion for the control of
autonomous ground vehicles. General design issues for autonomous navigation of an obstacle course are first
discussed. with an emphasis on sensor fusion. A brief summary of the subsumption architecture is then given, with
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a description of the umplementation of the subsumption wrchitecture on wwo different vehicles. A discussion of
future areas of work is also included.

2. AUTONOMOUS NAVIGATION ISSUES

2.1 Information needed for obstacle course navigation

Many issues are involved in designing an autonomous vehicle to navigate an obstacle course of the type established
by the AUVSI for the vehicle competition. These issues can be divided into various functions. such as gathering all
necessary sensor data, processing sensor data, and applying control signals to the vehicle’s actuators, or they can
be divided into various behaviors, such as path following and obstacle avoidance * ' !,

No matter how the issues are divided, the vehicle must be able to detect the course’s boundaries and the multiple
obstacles it may encounter. How the boundaries are defined and what one wishes the vehicle to do with boundary
information dictate which technologies are candidates for boundary detection. Computer vision can detect
boundary lines both near and far, providing the vehicle with information about its present location and its possible
future locations. An infrared emitter/detector pair can also be used for boundary detection. This method relies on
the retlection of an emitted signal and thus the emitter/detector must be in close proximity to the line. Using this
method. it would be very difficult to get any knowledge about where the vehicle should go in the distant future.

The vehicle must also be able to detect obstacles. Ideally, proper detection should allow obstacles to be avoided
altogether. Detecting obstacles from a longer distance is beneficial, as more time is available to take evasive
action. Computer vision systems can be used to detect the location of obstacles at significant distances, but
extensive image processing may be required for both obstacle recognition and distance calculations to the identified
obstacle. A simpler approach is to use soundwaves from ultrasonic transducers to locate obstacles. These sensors
have nice distance detection capabilities, but because they tend to have limited fields of view, an array of ultrasonic
sensors is usually needed to provide sufficient coverage * %% !,

[n the 1996 competition, collisions with an obstacle were acceptable, but moving an obstacle was not. Tactile
sensors can be used to provide information about collisions. As with the ultrasonic sensors, an array of tactile
sensors should be used to determine where on the vehicle the collision occurred. This allows corrective measures
to be taken to avoid hitting the obstacle a second time.

2.2 Sensor fusion

Autonomous navigation most likely will involve gathering and processing data from a variety of sensor types. In
the previous section, computer vision, infrared emitter/detector pairs, and ultrasonic and tactile sensors were
discussed in relation to detecting boundary lines and obstacles in the context of obstacle course navigation. In
general, laser rangefinders, inclinometers, photosensitive resistors, Global Positioning Systems (GPSs), and many
more devices may be used to provide information to a vehicle. Combining all of this information in an intelligent
and organized fashion is called sensor fusion.

It is conceivable that sensor fusion could be avoided altogether in obstacle course navigation by using only
computer vision. However, there are numerous disadvantages to this approach:

» Computer vision is not trivial, as complex image processing can be computationally intensive

»  Other sensing technologies may be better at performing a few specific tasks. such as tactile sensors for obstacle
collision detection ‘

» Diverse and unpredictable lighting conditions diminish the reliability of a computer vision system

* In general. using a single sensing modality provides a single point of failure

A system capable of performing sensor fusion addresses all of the points listed above. Perhaps the biggest
advantage of such a system is that sensor multiplicity can provide redundancy. Sensor uncertainty and error will
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exist in autonomous vehicle navigation *° .

uncertainty and error,

Redundancy helps to lessen the harmful effects of sensor

Another advantage of sensor fusion is its inherent degree of modularity. Creating a system that is modular has
many benetits in both the initial design stage and later refinements. Ideally, as more sensor information becomes
available, this information should be able to fuse with existing data easily, without requiring large changes to
current software and hardware. Sensor fusion techniques are based on this ability to combine multiple modules
into a single system.

2.3 Reactive systems versus planning systems

The actions of an autonomous vehicle can be the result of two general types of control structures: reactive or
plunning. Both of these control structures use sensory information to determine actions. A planning control
strategy assumes that the vehicle has a world model on which to base all of its actions. Information is sensed.
processed based on the world model. and then an action is generated. The world model may be known a priori. or
alternatively, may be developed from information gathered by the vehicle’s sensory inputs. A reactive system
differs in that it uses no world models and its sensory inputs are subjected to minimal processing before generating
outputs, leading to a quick response from a given stimulus.

In most cases of autonomous navigation. a detailed world model will not be known a priori. If a planning system
is to be used, a model of the world must be built from sensory inputs. Unfortunaiely, sensory systems can typically
only provide a partial picture of the environment * ¢, Sensory information gathered is also inherently noisy, as
sensors may not be operating at all times under ideal conditions. This can lead to inaccurate world models and
poor performance in a planning system.

Reactive, or behavior-based, systems do not require the development of a world model and are relatively simple
compared to planning systems. Participants in previous competitions have proposed using reactive systems due in
part to the relative simplicity of such designs '>!'. The behavior-based approach is also ideally suited to obstacle
course navigation, as the task can be decomposed into distinct behaviors such as path following, line following,
obstacle avoidance. etc.

3. SUBSUMPTION ARCHITECTURE OVERVIEW

The subsumption architecture is a behavior-based control scheme developed for controlling autonomous mobile
robots " *. Control of an autonomous mobile robot will inevitably involve multipic goals. some of which may
require contlicting actuator demands. Any successful architecture must have a means of arbitrating these
conflicting demands. The subsumption architecture does this by taking a behavior-based approach to decomposing
the entire control problem.

A typical approach, as shown in Figure 3.1, is to break down the problem into a series of functional units. where
gach unit performs a specific function. For an autonomous vehicle to navigate an obstacle course, these functions
may include gathering sensor data, processing sensor data, making logical steering and drive decisions, and
applying control commands to steering and drive actuators. There are. however, multiple disadvantages to this
type of architecture: '

¢ The details of every module must be considered before the construction of any individual module can proceed.

¢ Module interfaces are extremely important because of the module-to-module flow of information.

e A problem in one module can lead to a cascade failure in other modules that depend on the output of the
damaged module.

The subsumption architecture takes an alternate approach by decomposing the problem into parallel, task-
achieving behaviors, as shown in Figure 3.2. Individual behaviors are generated from modules, each of which is a
simple, asynchronous computational machine. An entire control system is then constructed using layers of these




hehavior modules. The vehicle achieves a certain level of competence tor each layer in its control system. As morz
modules are added. the overall level of competence of the vehicle increases. Higher layers produce more specific
desired behaviors and can subsume lower layers by suppressing the lower layers' outputs. For autonomous obstacle
course navigation. these behaviors may include path following, obstacle avoidance, and reaction to obstacle
collisions. This style of architecture addresses all of the problems associated with the series architecture of Figure
3.1: modules are constructed individually, module interfacing is not elaborate, and failures in one module have a
minimal atfect on other modules.

Sensors Gather Make Apply Actuators
Process .
—  Sensor [ — Logical P Control ——
Data .
Dat Decisions Commands

Figure 3.1 A series of functional modules for obstacle course navigation

Respond to Collisions

Avoid Obstacles

Sensors ‘ Actuators
Follow Path >

Figure 3.2 Parallet behavior modules for obstacle course navigation

The subsumption architecture essentially involves fixed priority assignments between behaviors. The commands
belonging to the highest priority behavior are applied to the robot's actuators. The designer of such a system must
decide on the number of behavior levels and what priority to assign to each level. The ordering of the modules in
Figure 3.2 shows one possible behavior decomposition and hierarchy for the obstacle course navigation problem.

4. VEHICLE DESIGNS

Past competitors have designed vehicles using computer vision to detect the course’s boundaries and ultrasonic
sensors to detect the hay bale obstacles > ' '', The Virginia Tech Autonomous Vehicle Team used a similar
approach in designing two vehicles, BOB (Beast of Burden) and CALVIN (Computerized Autonomous Land
Vehicle with Intelligent Navigation).

Figure 4.1 provides an overhead view of the two vehicles, showing their relative sizes and the positions of the
cameras and ultrasonic sensors. BOB used a personal computer with a frame grabber card to interface with a
single camera. which was positioned near the middle of the vehicle and directed forward. CALVIN was equipped
with two cameras, each looking directly out to opposite sides of the vehicle. These cameras were positioned near
the front of the vehicle. An electronic video switch was used to connect either one of these two cameras to a frame
grabber card in a personal computer. Both vehicles used a Motorola 68HC11-based microcontroller to interface to
an array of five ultrasonic sensors and to three tactile sensor banks. The positions of the ultrasonic sensors were
different for each vehicle due to the different vehicle widths and the different bumpers on each vehicle. The three
tactile sensor banks were connected to the three segments of the front bumpers on each vehicle.




front of vehicles

BOB CALVIN
Figure 4.1 Top view showing relative sizes and configurations of the two vehicles

Figure 4.2 shows 2 block diagram of the control systems for the Virginia Tech autonomous vehicles. Three
different sensing modalities were combined into reference signals using the subsumption architecture to control a
steering motor and a drive motor. Sensor fusion is inherent in the subsumption architecture, where outputs
resulting from one sensor can be subsumed by outputs resulting from another sensor. A previous competitor ° has
stated that obstacle course navigation is ideally suited to subsumption architecture because the task can be broken
down into behaviors such as stay within the lines, follow a specific line. and avoid obstacles.

Figure 4.3 shows the sensor fusion block of Figure 4.2. The bottom layer was the Path Following module, which
used computer vision to create a path following behavior. The middle layer was the Obstacle Avoidance module,
which used ultrasonic sensors to avoid obstacles. At the highest level was the Emergency Obstacle Avoidance
module, where tactile sensors were used to trigger an emergency response if an obstacle was hit.
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Figure 4.3 Subsumption architecture approach to sensor fusion




Sensor fusion was accomplished on the microcontroller. The Path Following module was realized on the personal
computer, with its output sent to the microcontroller via a serial connection. The Obstacle Avoidance und
Emergency Obstacle Avoidance modules operated solely on the microcontroller. Software on the microcontroller
allowed the middle layer to subsume the lowest layer. The interrupt capabilities inherent in the hardware of the
microcontroller were used to allow the highest layer to subsume the two lower layers' outputs.  The next three
subsections of this chapter provide additional details about each behavior module,

Figures 4.4 and 4.5 show schematic diagrams of the integration of the personal computer and microcontroller with
the sensors and controllers for the two vehicles. BOB's drive motor controller performed closed-loop velocity
control. eliminating the need for any velocity feedback to the microcontroller in Figure 4.5.
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Figure 4.4 Computer integration of sensing and control for CALVIN
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Figure 4.5 Computer integration of sensing and control for BOB
4.1 Boundary detection through computer vision: Path Following module
On both vehicles. the input to this module was a camera image and the output was a preliminary steering angle for
keeping the vehicle within the boundaries of the course. The internal operations of this module, however, were

significantly different between vehicles because each used a different camera configuration.

On BOB, there was just a single camera directed straight ahead. Since one would expect boundary lines to extend
up the image plane. a weighted sum of pixels in each column was taken. with the goal being to find two modes in




this column data.  These modes. representing an estinate of the boundary locations. were used 0 create 2
preliminary steering angle that moved the vehicle toward the horizontal average of the two modes. The horizontal
average approximated the center of the course.

On CALVIN. two camneras were used, each directed outward at a right angle to the vehicle's forward direction.
One would expect boundary lines to appear as horizontal lines at a certain vertical position in these images. If the
detected line was not horizontal, CALVIN was not parallel to the boundary line. Similarly. if the line was
horizontal but not at the correct vertical position, then CALVIN was either t00 close or too far away from the
boundary. A steering angle was chosen to properly orient the vehicle based upon the angle and vertical location of
the detected line. If consecutive images were bad from one camera, a signal was sent to the microcontroller to have
it switch cameras, providing a degree of redundancy.

4.2 Obstacle detection through ultrasonic sensors: Obstacle Avoidance module

On both vehicles. five ultrasonic sensors located in the front of the vehicle were used to gathered distance data to
the obstacles. A collection of IF-THEN rules was used to analyze the distance values returned by the sensors.
These rules determined the steering angle needed to avoid any obstacles in the vehicle’s path. On BOB, the output
of this module was a steering angle that absolutely replaced (subsumed) the preliminary heading from the Path
Following module. On CALVIN, the output was either an absolute steering angle or a “steering delta” that was
added to the preliminary heading from the Path Following module. The resulting sum would then be the final
steering angle. This part of the sensor fusion was handled in software by the microcontroller.

4.3 Obstacle detection through tactile sensors: Emergency Obstacle Avoidance module

Tactile sensors placed on the front bumpers of both vehicles provided obstacle collision detection. Using input
capture pins on the microcontroller, interrupt service routines (ISRs) were executed in response to a signal from
any of three hanks of wired-OR tactile sensors. These ISRs effectively subsumed the outputs of the Path Following
and Obstacle Avoidance modules by forcing the vehicle to execute a “backing up” maneuver. This part of the
sensor fusion was handled easily because of the ISR capabilities associated with the input capture pins of the
microcontroller.

4.4 Summary of the vehicles’ performance

The subsumption architecture proved to be a good method for achieving sensor fusion. The inherent modularity of
this architecture made it an ideal choice for Virginia Tech’s initial experiences in developing autonomous ground
vehicles. The various behavior modules were developed, tested, and refined independently, greatly reducing the
effort required to fully integrated all sensor systems of the autonomous vehicles. At the competition in July, BOB
and CALVIN placed 6th and 12th, respectively, out of 17 participants.

The biggest problems encountered in performance trials were presented by shadows and glare from the sun. The
computer vision system on each vehicle had difficulty extracting the boundary lines from a captured image when
these artifacts were present. In both circumstances, the image preprocessing required could not sufficiently remove
the artifact while tracking the boundary lines. Both vehicles performed well when the sun was not shining
brightly. In this respect, the subsumption architecture was shown to work when the Path Following module could
successfully preprocess the captured images. This also emphasizes the importance of the bottom layer in a
subsumption architecture. This behavior should be the result of a very robust and fully operational module.

5. FUTURE WORK

The control systems on the vehicles performed well, but modifications are already being considered to improve the
overall performance of the vehicles. Future work will focus on three areas: 1) refining the three individual
modules of the subsumption network shown in Figure 4.3, 2) modifying the sensor inputs to these modules. and 3)
adding additional modules to the network.




3.1 Modifications within current modules

Within the Path Following module, modifications have been proposed to use more sophisticated computer vision
algorithms for line detection. The use of artificial neural networks (ANNs) for pattern recognition is one option
being explored. ANNs have the ability to extract underlying geometric shapes from a noisy image, providing a
degree of disturbance rejection that could counter the harmful effects of shadows and sun glare. Gathering training
data that is truly representative of the numerous lighting conditions that may be encountered in competition could
pose a problem tor this approach.

The collection of IF-THEN rules used within the Obstacle Avoidance module could also be modified. Rather than
using a large collection of crisp rules, a fuzzy rule-base has been proposed. The output of this system would still be
a steering delta or an absolute steering angle, but only a small number of fuzzy rules would be used. From this
small fuzzy system, a wide variety of responses would be generated. The possibility also exists to train a system to
learn a set of fuzzy rules that can most effectively handle the situations encountered in obstacle course navigation.

5.2 Sensory device modifications

Alternate sensory devices for the behavior modules of Figure 4.3 are also being considered. The use of a color
camera to provide the input to the Path Following module is being considered to address the problems associated
with sun glare. Grass without any paint was seen to reflect sunlight as much as blades of grass that had been
painted white (or similarly covered with lime powder). With a color camera, the intense green reflections could be
tiltered out while leaving the intense white reflections from the lines.

5.3 Additional modules

Line detection in an outdoor setting using computer vision is not a trivial task. It proved to be the system
component most prone to failure in testing and performance trials. Therefore, the addition of a second module for
boundary detection is planned. The detector used with this module would function at short range and would serve
as an indication that the vehicle is very close to a course boundary. The position of the Emergency Path Following
module in Figure 5.1 shows the relative priority of the behavior generated from this module.
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Figure 5.1 Subsumption architecture with addiﬁona.l module providing redundant line detection
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Abstract

In this paper, we present a new distributed anificial
intelligence (DAID) architecture we call the Distributed
Learning Classifier System (DLCS). The DLCS is an
extension of the learning classifier system (LCS), with
specific architecture additions for network message passing.
In order to iilustrate the effectiveness of the DLCS paradigm
in multiple-agent scenarios, we provide a solution to the
multiple-agent animat problem using the DLCS.

I. Introduction

The term “machine learning” is used to describe a
vast array of algorithms, methods, and paradigms which
attempt to solve tasks that run the gamut from speech
recognition to financial analysis to robot control. Machine
learning paradigms tend to fall into one of three categories:
neural modeling, symbolic concept acquisition, or domain-
specific learning [1]. The neuron-like networks present in
neural modeling techniques provide fast, relatively simple
mappings from input to output.  Symbolic concept
acquisition encompasses a broad range of artificial
intelligence methods in which a machine solves a task by
learning previously unconnected concepts using a
predefined symbolic notation. Domain-specific learning
involves a large amount of a priori knowledge about the
task, and these algorithms focus on using an extensive
knowledge-base to solve the problem [2]. In attempting to
solve a particular task, one would often prefer an approach
that provides a compromise between these three techniques.
The Learning Classifier System (LCS), proposed by John
Holland (3,4], provides such a compromise.

The LCS is a rule-based, message-passing, machine
learning paradigm designed to process task-environment
stimuli, much like the input-to-output mapping provided by
a neural network. In addition to neural-like mapping, the
LCS provides learning through genetic and evolutionary
adaptation to changing task environments. LCS concepts
are “subsymbolic,” meaning that they are encoded by the
system itself and not the designer. The LCS can still be
programmed with specific domain knowledge, however, and
this duality provides much design flexibility [{5].

The purpose of this paper is to introduce the
Distributed Learning Classifier System (DLCS) architecture
as a method for using the LCS in a multiple-agent setting.
As an extension of the traditional learning classifier system,
the DLCS provides a set of rules for interfacing to a
standard nerwork so that multiple LCS agents can work
collectively, while still executing individually. Collective
task solution is at the heart of distributed artificial
intelligence (DAI) research [6]. However, the DLCS differs
from other DAI architectures in that it requires no central
control, and is therefore more suited for tasks involving
multiple, autonomous agents. Also, since the DLCS uses a
network-like message-passing scheme, standard network
protocols can be used to connect agents. We begin our
discussion by providing a very brief overview of the
traditional learning classifier system and the current research
in the area. We then present a detailed discussion of the
DLCS and illustrate its application to a multiple-agent
problem.

II. Background

The learning classifier system consists of a list of
rules or classifiers that provide a set of possible actions for a
given problem scenario. Each rule has one or more
condition words and an action word. The system operates
by reading messages from a task environment interface,
comparing those messages to the conditions of the rules in
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the classifier list, and posting the corresponding action
messages back to the task environment. This sequence of
operations is referred to as an execution cycle and is
repeated untl a particular environment state is reached.
Messages from and to the environment are stored on a
message board. Since the message board is of finite length,
rules are probabilistically selected using a bidding process
based on a figure of merit called strength. Each rule has a
strength assigned to it, and rules whose conditions match the
environment messages are given a bid value based on this
strength. Rule strengths are adjusted by the task
environment payoff function based on the appropriateness of
the rule to solving the task at hand. Rule strengths are also
adjusted by the Bucket Brigade Algorithm (BBA), an
algorithm designed to encourage rule chaining. Rule chains
form when an action message from the previous iteration of
the execution cycle causes an action to get selected on the
current iteration. In order to provide a method for exploring
new rules, the rules in the classifier list are periodically
modified by a genetic algorithm (GA) which employs the
reproduction and mutation genetic operators.  The
combination of the GA (rule discovery) and rule strength
adjustment (credit assignment) enable the LCS to learn new
concepts.  Credit assignment and rule discovery are
performed after actions are posted to the environment. For a
more detailed discussion of the LCS, see {3] and [4].

Holland began development of the LCS in 1971
[7]. Since then it has undergone modest experimentation.
Some of the more recent work includes the application of
the LCS to letter sequence prediction by Robertson and
Riolo [8], multiplexer truth functon learning by Wilson [9],
predictive behavior learning by Carse [10], environment
variable storage by Shu and Schaeffer (11], and learning by
analogy by Zhou and Grefenstette {12]. Each of these tasks
focused on the use of a single LCS. Dorigo and Schnepf, on
the other hand, explored the use of multiple learning
classifier systems in robotics, with each system conwolling a
different aspect of the robot. While they show that this
conwol approach is effective, their setup does not explicitly
pass messages between classifier systems {13]. The DLCS
presented here goes beyond current leamning classifier
system research by introducing true networking into the LCS
framework. :

III. The DLCS
A. Overview

The DLCS extends the standard learning classifier
system with the addition of a nerwork interface, as shown in
Figure 1. The figure indicates message flow with solid
arrows and system control with dashed arrows. The
execution cycle operates by reading messages from the
environment through the input interface, selecting
appropriate actions from the classifier list, and posting
actions back to the environment via the output interface.
With the DLCS, however, we extend this message passing to

the network. Now, messages can come from the input
interface and the network interface and actions can get
posted to the output interface and to the network. The
network can also introduce new rules into the classifier list.
We describe in detail these two cases, as well as a third
message-passing case, in the next two sections. Since
networks are asynchronous and tend to have a delivery delay
that depends on external factors such as network congestion,
available bandwidth, and transmission rate, the network
interface contains transmit and receive queues for the
purpose of buffering network messages so that the LCS does
not have to wait for network response to continue execution.
These queues are simply FIFO buffers which store outgoing
and incoming messages.
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Figure 1. The DLCS

B. Network Message Types

In order to provide versatile and effective
communication over the network, the DLCS paradigm
provides three types of messages that can be passed over the
network: classifier messages, action messages, and BBA
strength adjustment messages. Classifier message passing
occurs when an agent finds a useful rule and shares this rule
with the other agents. Action message passing occurs when
an agent periodically sends one or more of its selected
actions to other agents in the network. Finally, since agents
are passing action messages back and forth, rule chains can
form between agents, and BBA swength - adjustment
messages must be sent between them.

Each type of message-passing has different

" implications for the DLCS. Classifier message passing

allows one agent to share its learned knowledge with others.
As will be shown in the next section, only classifiers with
higher strengths can be passed, thereby ensuring that only
“good” rules are shared between agents. Therefore, if one
agent has learned part of a task more quickly than its fellow
agents, that agent will share this learned information and
help accelerate the learning process in the other agents.




Action message passing, on the other hand, provides a
method for one agent to directly “talk” to the others. These
received network action messages combined with
environment interface messages work together to “fire” rules
in the classifier list. The BBA payoff messages perform the
same function as in the single-LCS case by encouraging
chains to form between agents, thereby encouraging
“discussion” among agents.

C. DLCS Execution Cycle

The following is the execution cycle for the
distributed leamning classifier system. The execution cycle is
based on the standard LCS cycle, with items in italics
representing DLCS additions.

1. From the input interface, read the messages from the
environment and post them on the message board.
From the receive queue, read the action messages from
other agents and post them on the message board. Also
read the classifier messages from other agents and
probabilistically replace weak rules in the classifier list
with these new rules.

2. Compare the messages on the message board with each
classifier. Record a match for every classifier whose
condition words have all been matched by these
messages.

3. Calculate bids for each marching
Probabilistically select classifiers to post.

4. Clear the message board and post the actions of the

selected classifiers.

Send the messages on the message board to the output

interface. Send a subset of these messages and/or a

fixed number of high-strength classifiers to the transmit

queue.

6. Adjust the strengths of classifiers. Extract and process
any BBA strength adjustment messages from the receive
queue, and send BBA payoff messages to the transmit
queue as necessary.

classifier.

W

Steps 1 and 5 of this execution cycle are responsible for
reception and transmission of classifier and action network
messages, respectively. We must establish rules for
transmission and reception so that the number of messages
sent over the network can be controlled and so that one can
control the amount of influence agents have upon one
another. We will discuss ansmission first.

Transmission of action and classifier messages

occurs on step 5 of the execution cycle. We state above that

a “subset” of the selected actions should be sent. This
subset is defined by two variables, the transmit bid
threshold, Bry , and the maximum number of actions to
ransmit, Nryaeon. 1he transmit bid threshold defines the
minimum bid value required before an action is eligible to
be sent aver the network. By imposing a bid threshold, only
those actions whose posting classifiers have a high strength
will be sent, since the bid is based on the strength. Nrxacrion

provides a way to control the amount of network traffic by
imposing an upper limit on the number of actions that can be
sent, in case all of the actions have large bids. If Vi senon is
smaller than the number of actions eligible to be wansmitted.
then the actions with the largest bids are sent.

Transmission of classifiers on step 5 is also
governed by two variables, the transmit strength threshold,
Srx, and the maximum number of classifiers to transmit,
NTXclassyier- The transmit strength threshold functions like
the bid threshold in dictating a minimum strength required
before a classifier can be transmitted. This threshold
ensures that only “good” rules are sent over the network.
Nrxclassiier @ls0 helps control the amount of network traffic
by limiting the number of classifiers that can be sent, since
classifier lists are often rather large. These variables
collectively influence the degree of coupling in the multi-
agent application. Coupling should be “tight” enough that
collective behaviors emerge, but no so tight that network
bandwidth is threatened.

We should point out at this point that action and
classifier messages are broadcast over the network to all
other agents. As will be shown, each agent has the
opportunity to discard received messages. Also,
transmission of these two message types is globally paced by
two time intervals: an action transmission interval, Tarion
and a classifier transmission interval Teaeiner. If we define a
unit of time as one iteration of the execution cycle, these
intervals determine how many iterations occur between
network transmissions. Larger intervals provide less inter-
agent communication and therefore result in less coupling
between agents. Smaller intervals provide more coupling.

Reception of action and classifier messages occurs
on step 1 of the execution cycle. Since both action and
classifier messages are broadcast, there will in general be
more messages in the receive queue than were transmitted.
Agents must have a method of filtering out the best
messages from all those received. As with transmission,
action and classifier message types are handled separately.

Action message reception is governed by two
variables that are effectively the converse of the
transmission variables, the receive bid threshold, Bgy , and
the maximum number of actions to receive, Naxacrion. 1hese
variables are separate from their corresponding transmit
variables because we may wish to put more stringent
requirements on reception than transmission, since reception
will have an impact on an agent’s behavior. In other words,
an agent can be more liberal in its sharing of information,
while putting a higher premium on the usefulness of
received information. To achieve this end, one generally
uses Bry > Brx and Nexoction < Nrxacion - Note that those
received action messages that are not used are discarded.

Classifier message reception is also controlled by
two variables, the receive strength threshold, Sgx , and the




maximum number of classifiers to receive, Mg assiier -
These variables perform the same function as in action
message reception.  Again, we want the reception
requirements to be more stringent because each rule that an
agent accepts will replace a weaker rule in the classifier list.
The more network-based rules accepted, the more agent
rules replaced. While rule replacement is not a necessarily a
detrimental occurrence, we want to ensure that only “bad”
rules are repiaced. Again, unused classifier messages are
discarded. Note that there are no receive intervals for action
or classifier reception since the frequency of reception is
dependent on the frequency of transmission.

There are no restrictions on BBA payoff message
transmission and reception, since this message passing is
governed by the bucket brigade algorithm. The BBA
dictates that supplier classifiers should be paid if they post
an action message that fires one of the current classifiers. If
these suppliers happen to be in another agent’s classifier list,
a BBA payoff message is sent over the network to that
classifier. Note that in the BBA payoff message case,
messages are not broadcast; they are sent directly to the
2gent getting paid. BBA transactions occur on executica
cycle step 6.

Finally, depending on the task to which the DLCS
paradigm is applied, one may wish to disable action passing
or classifier passing. The DLCS has been designed so that
action and classifier passing work independently, and
therefore disabling one does not change the operation of the
other. Also, disabling the bucket brigade algorithm disables
BBA message passing.

IV. Multiple-Agent DLCS Example

As an example of the DLCS, we introduce the
multiple-agent animat problem. An animat, or “artificial
animal,” is an exwremely simple autonomous robot modeled
after an animai [9]. The “animat problem” describes the
autonomous robot’s search for a goal in an obstacle-filled
environment. We extend this animat problem to include
muitiple autonomous robots, each attempting to reach the
same goal. We will show that the DLCS paradigm allows
these animats to reach the goal faster and more efficiently
than animats with standard LCS controllers.

We model a simple autonomous agent as a treaded
robot subject to the nonholonomic constraint—the robot’s
velocity is limited by its position, thereby requiring that the
robot travel only in the direction in which it is pointed. The

robot is equipped with left and right goal and obstacle

sensors, with the goal sensors having a much larger range
than the obstacle sensors. However, the robot does not
understand its sensor or kinematic systems; it must learn
relaonships between sensors and motion from credit
assignment. Credit assignment is accomplished by
evaluating an agent’s action on each time step. The agent is
rewarded for moving closer to the goal and being more

directly pointed at the goal. The agent is penalized for
moving away and “looking away” from a goal and for
crashing into an obstacle. The environment consists of an
infinite plane with two long obstacles and a goal. The
agents start behind both obstacles, such that the obstacles
obstruct the most direct path to the goal.

The purpose of this simulation is to illustrate the
effect of LCS network distribution. Therefore, we have
disabled the Genetic Algorithm and the BBA in the standard
LCS. For our DLCS settings, we use classifier message
passing only, with Srx = Sgx = 80% of the maximum strength
on the classifier list at the time of transmission and
reception, respectively. Nrxcussier = Nex classiier = 1 and
Tetassiper = 1. We use two agents in the animat scenario, and
each agent’s classifier list is initialized with random rules.

Two Agents with DLCS Control
600 T T T T T

Goal

Obstacles
=200

~400 p-

Start
-600 . . : - M
-600 -00 -200 0 200 400 600

Two Agents with LCS Control
600 r T r r T

0 =% 0 200 300 800

Figure 2. Simulation results comparing the DLCS with
the standard LCS.




We have included the results of two simulations in
Figure 2. In the first, the DLCS architecture is used for each
agent. In the second, agents use the standard LCS
architecture. In each case, the agents’ classifier lists are
initialized to the same identical set of random rules. As can
be seen from the figure, the agents are much more successful
in maneuvering around the obstacles and reaching the goal
when using the DLCS paradigm than when they are given
waditional LCS conwollers with no inter-agent
communication. Because classifier passing occurs on every
iteration of each agent’s execution cycle, agents’ classifier
lists tend to quickly converge to the most useful rule, in this
case, a rule which moves the agents toward the goal.
Without the DLCS architecture, agents are left to “fend for
themselves,” and their successfulness suffers accordingly.

V. Conclusion

While there are many facets of the standard
learning classifier system that have yet to be fully explained,
the LCS has proven to be useful in several areas of machine
learning. To fully take advantage of some of the inherent
characteristics of the LCS, we have introduced its
distributed sibling, the DLCS. With the additions to the
learning classifier system described in this paper, the DLCS
can function as a paradigm for inter-agent communication
and cooperation. We feel that the DLCS can be an effective
tool in agent organization and coordination and can be
useful over a wide range of distributed artificial intelligence
tasks.
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Abstract

A distributed reinforcement learning system is designed
and implemented on a mobile robot for the study of
complex task decomposition and dynamic policy
merging in real robot learning environments. The
Distributed Q-learning Classifier System (DQLCS) is
evolved from the standard LCS proposed by J.H.
Holland. We address two of the limitations of the LCS
through the use of Q-learning as the apportionment of
credit component and a distributed learning
architecture to facilitate complex task decomposition.
The Q-learning update equation is derived and its
advantages over the complex bucket brigade algorithm
(BBA) are discussed. Holistic and monolithic shaping
approaches are used to distribute reward among the
learning modules of the DQLCS and allow dynamic
policy merging in a variety of real robot learning
experiments.

1. Introduction

Recendy, considerable interest has arisen in robot
learning. The generai theue in robot learning is that an
intelligent machine is one that can sense its environment,
learn how to cause change in its environment to achieve
a goal, form plans to carry out tasks, and react to
unpredicted external stimuli. In unsupervised learning
the robot is given the ability to explore its environment in
a trnal-and-error fashion to collect data. From an
evaluation of this data, the robot must learn a mapping
from its input sensor values to its output effector actions.
Reinforcement learning involves the use of feedback to
reason about the quality of the robot’s condition-action
rules.

We have selected one unsupervised reinforcement
learning algorithm, Holland’s Learning Classifier System
(LCS) [3,6,7}, for study and implementation. The LCS is
a rule based, message passing machine-learning
paradigm that incorporates planning and rule discovery
for intelligent problem solving in a dynamic
environment. While the system we implement resembles

Holland’s original LCS in structure, several additions
and substitutions are included. After discussing the
limitations the bucket brigade algorithm, the
apportionment of credit (AOC) mechanism in Holland’s
LCS, we offer Christopher Watkins’s Q-learning
algorithm [10] as a replacement. We also examine an
enhancement of the original LCS, the Distributed
Learning Classifier System (DLCS) [1, 5]. The system
we implement has the distributed capabilitics of the
DLCS, but it uses Watkins’s Q-Learning mechanism for
credit apportionment. We call this system the
Distributed Q-learning Classifier System (DQLCS).

Monolithic systems suffer from slow learning due to
the large size of the state space created by complex or
multiple goal tasks [11]. This explosion in state space
size is called the curse of dimensionality. Task
decomposition [11] is a solution to the problem of
complex task learning in which the overall task is
divided into smaller pieces. Each individual task is given
a control module whose objective is to learn only to
achieve that task. Then, instead of learning over a single
state space whose size is exponential in the number of
tasks, the modular system learns over a linear number of
constant sized state spaces. The capability of a system to
then learn to coordinate these multiple behaviors, or
policies, is called dynamic policy merging [11]. Many
questions still remain about various shaping techniques,
the schemes for combining reinforcement learning and
distributed control on the same system. From our
experiments, we comment on the effectiveness of the
DQLCS at decomposing and solving robot learning
problems using two distributed reinforcement techniques,
holistic shaping and modular shaping.

2. Developing the DQLCS

The structure of the Learning Classifier System
(LCS) is shown in Figure 1. Boxes represent the various
components of the LCS, and arrows represent the flow of
data through the system. The operation of the system is
based on the use of lists of evolved production rules or
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classifiers. Classifiers are condition-action pairs. Each
classifier defines a possible state of the environment.
Associated with each classifier is a strength value. The
strength of a classifier is related to its current usefulness
to the system as compared to all of the other classifiers in
the system. The goal of the LCS is to adjust the strength
of all of the classifiers over time until the classifiers most
useful in achieving the desired goal are distinguishable
from the rest. A credit assignment scheme is used to
update the strengths of the classifiers. Credit assignment
is recognized as the key to the success of the LCS.

The input interface and output interface are used for
interaction with the environment. The input interface
receives as input sensor values and encodes them into a
message for posting on the message board. The output
interface decodes the action part of the winning rule and
sends the command(s) to the machine for execution. The
message board is a bulletin board upon which messages
describing the current state of the system are “posted”.
The classifier list is the rule base for the LCS that
contains all of the system’s rules and their associated
strengths. Credit assignment or apportionment of credit
(AOC) is used to adjust the strengths of the classifiers
based on the positive or negative effects on the state of
the system resulting from their use.

N &
. .
Tnput Message * x
Interface Board Classifier
. List Output
1 H Interf:
Reinforcement ] % =
Leamning (Bucket T
Brigade Algorithm) ¢ I Rule Discovery
T (Genetic Algorithm)
Performance
Criterion

Figure 1. The Learning Classifier System (LCS)
structure.

2.1. Q-learning vs. The BBA

The apportionment of credit component in the LCS
architecture as originally proposed by Holland is the
bucket brigade algorithm (BBA). In theory, the BBA
solves the credit assignment problem by encouraging the
formation of rule chains. Research has shown that the
BBA in its original form could sustain pre-existing rule
chains, but that it is not strong enough to successfully
encourage chaining from a rule list consisting of initially

random strings {2, 5, 9]. The backwards propagation of
rewards from the rules receiving the rewards to their
supporters was observed to take many time steps. This
slow learning process results in the need for a large
number of initially long-running experiments before the
first rules in the chain receive any reward.

Because of the time requirements imposed by real
learning robot problems, we decided that the BBA is not
sufficient for use in our system and that some other
apportionment of credit algorithm is necessary. In the Q-
learning classifier system (QLCS) [1] the BBA is
replaced by Q-learning {10]. In a Q-learning system,
each state-action rule has an associated Q-value. The Q-
value is an estimate of the minimum cost-to-go
associated with taking the rule’s action when the state of
the environment matches the rule’s condition. After a
rule is executed, the environmental feedback is used to
update the its Q-value. Ultimately, the system reaches an
optimum policy, a path of least total cost.

2.2 Derivation of the Q-learning Update
Equation

Q-learning originated as a recursive algorithm for
solving Markov decision problems.  Markov processes
contain a finite number of states, with each state having a
finite number of possible actions. The probability of
making a transition from one state to another is a
function of the current state and not on any past history
of the system. We call the set of » finite states in a
Markov decision-process S = {s;}, i=1, 2, ..., n,. Ateach
state, there is a set of n, possible actions 4; = {ag},
Jj=1,2,...,n.. The probability of making a transition from
state s, to state s; given the action a is pr(s; = s;) = p;{(a).
When an action a(t) € 4, is taken from state s(f) € S at
time step ¢, the new state function S(t + 1) = p(s(®), a(®))
determines the resulting state. Each state-action rule has
an associated value, ci(aq), that represents the
instantaneous cost incurred by taking action a in state s;.
This probabilistic value is assumed to be either always
positive or always negative and is estimated by the
expected value: E [¢; (a)] =¢;(a).

We now establish the value function V,(i), the
expected sum of all future discounted costs where the
system starts at state s; and follows the state function .

l: -lr'cs, (s s = S,-] M

2
=0

The summation includes all future states of the

system, where s, is the state of the system at time ¢ and y

is the discount factor, y € [0,1]. By applying the

discount factor, we emphasize more immediate future

costs over distant future costs. The inclusion of this

V,() = lim E[
n,~»o




discount factor and the previously mentioned restriction
on cost function sign facilitate the convergence of the
summation [10].

Bellman’s principle of optimality 8] is used to find
the optimal policy, a policy that minimizes the future
expected cost. Bellman’s equation can be stated as the
following:

) gafer ot o
aedli 5)€8

This equation says that the minimum total cost from
the current state to the goal is the sum of the minimum of
the expected instantaneous costs for actions from the
current state and the minimum cost of going to the goal
from the resulting next state.

By reformnulating (2) as a recurrence relation, the
costs-to-go may be estimated over repeated trials. Value
iteration, a recursive estimation equation of the form

(s )= m;'(n){a- @+r 2 py (a)V*(s,-)}, 3)
asdu 5,68

has been shown to converge to the optimal value policy
V'(s;) for a given initial estimate V(s;) [10]. That is, if at
the k™ iteration V'(s;) is estimated as V*(s), then
VD (5) > V'(s) as k — <.

Watkins [10] reformulated Bellman’s equation by
adding Q-value notation:

Q‘(s,»,a)=Ei(a)+7jze:sp,~j(a)V‘(sl-). €))

In this equation, Q*(s;a) is the Q-value associated with
taking action a from state s;, Equation (3) shows the
simplification of Bellman’s equation (2) resulting from
the substitution of Watkins’s Q-value notation:
14 (s,-) = a?j{:l 9 (s,-,a). )
Applying the value iteration technique to this
simplified form of Bellman’s equation gives us the
following results:

vE(s,) = min 0%(5,,) 6)
and
Vhl(s")za?}f})Qk” (s,.,a). %)

Now the recurrence relation (3) becomes

min Q(k+l)(si’a) -
aedy

min{ﬁ(a)w 2 p;(@) min Q"(s,,a)}. @®)
aedy s5,e8 "‘El‘( )

Since this is known to converge to an optimal solution,
we can rewrite (8) as

0%*(s,,a) 5@ +7 T p,(@) min 0*(5,,a)
J/ES / «JEA(/) /

The recurrence relation of (9) provides an estimate
for the Q-value of the state-action pair (s;, a) in terms of
an expected instantaneous cost and a weighted sum of
minimum costs-to-go for the state action pairs (s; a). We
then approximate the unknown values ¢;(a) and p,(a)

as:
¢ (@) =¢(a), (10)
and
2 Py @V (s)=V(s)). (1)
s;€S
In (10) and (11), the estimate of the expected
instantaneous penalty is the single sample value of the
incurred instantaneous penalty, and the expected
minimum cost-to-go is estimated as the minimum of the
estimated costs-to-go at the next state.
We can write the estimate of Q(s;a) at the (k+/)*
iteration by substituting (10) and (11) into (9):
¥V (s, =¢; (@) + WV (s)) . (12)
Let Q(s,a;) be the current estimated minimum cost
for executing action a in state s at time t. After taking
this action, we update our estimate of Qs a,) using (12).
The old and new estimates are combined in the relaxed
Q-learning update equation:

Qe (SI , at) « [l—a(sr »ar)]Q: (S: , a!)
+a(s,,a,)[c,¢ (a,)+yV, (s,,,,) (13).

In (13), a5, a) is a learning rate between 0 and 1.
The learning rate thus provides a means to weight the
combination of the Q-value’s past estimation and the new
measurement.

2.3. The QLCS Execution Cycle

After replacing the BBA with Q-learning and rule
strengths with Q-values, the QLCS execution cycle is as
follows.

From an initialized set of Q-values, Qy:

1. Observe the current state s of the system.

2. Compile a list of all eligible classifiers £(s, #)

3. Select a winning classifier using a stochastic
selection method.

4. Pass the action part a of the winning classifier to the

output interface to be executed.

Advance the system clock: £ = ¢+ 1.

6. Receive an immediate cost c(s,a) for executing
action g in state s at time £.

7. Examine the new message board.

8. Compute the new eligibility set E(f) given the new
environment state.

bgl




9. Rank all of the classifiers in £(f) based on their Q-
values.

10. Update the Q-value of the classifier chosen during
the previous clock tick using the Q-learning update
equation (13).

11. Make a probabilistic selection of the classifier with
the maximum (or minimum) Q-value.

12. Goto 4.

In many problems the state space representation of
the environment is too large for a monolithic learning
system to explore in a feasible time period. A distributed
architecture more suited to this type of problem was
introduced by Dorigo [4]. His architecture allows for the
distribution of internal LCSs for the study of learning
problems involving real robots. The Division of Labor
(DOL) architecture is proposed by Bay and Stanhope [1].
In the DOL learning system, separate modules focus on
solving independent parts of a learning problem. This
property closely matches the idea of task decomposition.

The DOL architecture contains a layer of thinker
LCSs, each focusing on learning a specitic behavior.
Above this layer resides a combiner LCS. The job of the
combiner is to coordinate the decisions of the thinkers
and to choose the ultimate output action.  This
architecture also includes a mediator for distributing
input sensor data and reward to the thinker LCSs. The
decomposition of the input messages is the most
important property of the DOL architecture. It greatly
reduces the size of the state space search that must be
completed in a learning application.

Besides the standard AOC problem, distributed
systems have the problem of shaping, the decomposition
and distribution of reward to each LCS in the system.
Holistic shaping treats the entire learning system as a
black box. The same reinforcement is blindly given to all
of its LCSs. This reward scheme introduces some
ambiguity problems to the system, however. Thinker
LCSs may be rewarded for bad decisions or may go
unrewarded for correct decisions. In modular shaping,
the thinker LCSs are first trained independently. After
they have obtained a suitable level of performance, their
learning is “turned off’, turning them into reactive
systems. The combiner learns to coordinate the action
messages of the thinker reactive systems to achieve the
complex goal in a separate learning exercise.

3. Experimental Results

We observed the performance of various
configurations of the QLCS and DQLCS when applied to
typical real robot learning problems. The small mobile
robot was equipped ultrasonic range finders and infrared
sensors that detected modulated light from specially-

constructed “beacon”  emitters. The problem
environment sclected for the learning system is shown in
Figure 2. The problem is common in robotics: find the
best path through an environment to a goal position.

Figure 2. The goal secking problem environment.

We used three infrared goal beacon detectors and a
middle ultrasonic sensor as input sensors. For these
sensors, the “docked”, or goal, position was then defined
as any position where the robot was “seeing” the goal
beacon with at least the middle goal detector, and the
range from the ultrasonic sensor was one unit of
measure. Table 1 provides a breakdown of sensors and
their associated penalty values used for instantaneous
cost calculations in these experiments.

Sensor Associated Penalty
Middle ultrasonic 10*(3-bit range
value)
Left Goal #2 0.25*%50=12.5
Middle Goal #2 50
Right Goal #2 0.25*50 = 12.5

Table 1. QLCS penalty values for experiments

An upper limit of 50 time steps was used for each
experiment. Regardless of the position of the robot, the
system terminated the trial after the 50% clock cycle.

3.1 The Monolithic Approach

The docking problem was first studied using a
monolithic Q-learning classifier system. The system
used 6 bits of input: 1 bit from each of three goal beacon
detectors and 3 bits from the ranging sensor. The output
action string for each classifier was four bits: 2-bits for
rotation and 2-bits for translation. The state space of the
problem was then covered by 2'° or 1024 classifiers. The
initial state of the environment is shown in Figure 2.
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Figure 3. Learning curve for monolithic QLCS.

Figure 3 shows the monolithic QLCS’s performance.
This system was observed for 100 trials. For most of the
experiment, it is difficult to find any system
improvement. Within the final 15 trials, however, the
system appears to be settling to some standard
performance. It also “timed out” less as the experiment
progressed.

3.2 The Distributed Approach

Next, we studied the same problem with the
distributed architecture. Inside the DOL framework, we
observed the performances of holistic and modular
shaping. Table 2 shows the DQLCS configuration.

QLCS Input bits/Source Qutput | CIfs
Thinker #1 | 3/range 2-bit 32
Thinker #2 | 3/beacon detectors 2-bit 32
Combiner |2/output from Thinker 1 | 4-bit | 256

2/output from Thinker 2

Table 2. DQLCS classifier configuration.

3.2.1 Holistic Shaping

Figure 4 shows the learning curve for the holistic
system. There was only marginal improvement shown by
this system. The system “timed out” during most of the
first 20 trials. When the goal was reached, more than 25
time steps were always necessary. As the experiment
progressed, the robot was able to find the goal more often
and more quickly, but even then performance was only
marginal.
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Figure 4. Learning curve for holistic shaping DQLCS.
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3.2.2 Modular Shaping

For use with a modular shaping DQLCS, we divided
the “goal-seeking” behavior into the sub-tasks of
“approach goal” and “locate goal. The “approach goal”
behavior involved translation only, while the “locate
goal” behavior rotation only used rotation actions.

For the “approach goal” behavior, the QLCS used 3-
bit range data- as input. Four possible translation
commands were selected by the 2-bit output action
strings. The cost function returned a constant multiple of
the range to the goal. The learning curve for the system
is shown in Figure 5.
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Figure 5. Learning curve for “approach goal” behavior.

The objective of the “locate goal” behavior was for
the robot to learn to use rotation commands orient itself
towards the goal beacon. The QLCS used a 3-bit input
(one bit from each of the three goal detectors) and
generated a 2-bit action string that was used to select
from among four rotation commands. The goal detector
penalties from Table 1 were used. To insure that the
system learned the behavior completely, three different
initial environments were used. For Trials 1-30, the
starting position had the robot’s left goal detector seeing
the beacon. In Trials 31-50, the right beacon detector
initially saw the beacon. In the remaining trials, the




robot was placed such that the beacon was directly
behind it. _

The results of the experiment are shown in Figure 6.
This learning curve is actually a combination of three
scparate learning curves, one for each new starting
position. In each of the three starting positions, we see
that the system quickly learns the appropriate course of
action to quickly reach the goal state.
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Figure 6. Learning curve for rotation behavior.

After the “locate goal” and “approach goal”
behaviors were learned, the QLCSs’ learning was “turned
off’. Using the two QLCSs as thinkers, an untrained
combiner was given the “seek goal” task using modular
shaping. Figure 7 shows the learning curve for the
modular shaping DOL system. The improvement of the
system from the first trial to the last is easily visible. As
is shown in Figure 7, the system learned a path that
required approximately 11 time steps after only 30 trials.
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Figure 7. Leaming Curve for modular shaping DQLCS.

4. Discussion of Results

From a comparison of the performances of the three
classifier systems, we can see that the DQLCS with
modular shaping was best suited for this problem. It
appears that the size of the knowledge base in the
monolithic system was its downfall. There simply were
not enough visits to each state for the incremental
learning algorithm to be successful. The ambiguous
nature of the holistic shaping distributed system is its

major problem. It appears that reinforcement is assigned
to the thinker classifiers in a manner that is much too
haphazard. The learning process is slow; therefore,
overcoming misguided reinforcement often takes too long
to be practical in real robot applications.

The performances of the QLCSs show that Q-
learning is an acceptable alternative to the BBA as the
apportionment of credit component of the LCS. The
results from the DQLCS experiments indicate that the
distributed architecture using modular shaping is more
time efficient at solving tasks that require the learning of
complex behaviors than either a monolithic architecture
or a distributed architecture using holistic shaping. While
the DQLCS with modular shaping far outperformed the
DQLCS with holistic shaping, it also required the
infusion of much more domain specific knowledge. This
requirement limits its application to a considerably
smaller class of problems than may be attempted by the
DQLCS with holistic shaping.
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ABSTRACT

The Learning Classifier System (LCS) is a learning production system that generates behavioral rules via an underlying
discovery mechanism. The LCS architecture operates similarly to a blackboard architecture; ie., by posted-message
communications. But in the LCS, the message board is wiped clean at every time interval, thereby requiring no persistent
shared resource, -

We then Propose a new architecture, the Distributed Leaming Classifier System (DLCS), which generalizes the message-
passing behavior of the LCS from internal messages within a single agent to broadcast messages among multiple agents. This
communications mode requires little bandwidth and is easily implemented with inexpensive, off-the-shelf hardware. The
DLCS is shown to have potential application as a learning controller for muitiple inteiligent agents.

Keywords: machine leaming, learning classifier systems, distributed artificial intelligence, production systems, distributed
mobile robots. animat, genetic algorithms.

1. INTRODUCTION

As mobile robots become increasingly common for service and inspection tasks, the debate over the necessary level of
complexity of their controllers continues. At one extreme is the purely reactive or behavioral approach, which espouses
sumulus/response pairs over deliberative planning. At the other extreme are planning controllers, including hierarchical
intelligent controllers, which may predict future states and generate control actions that consider a world model. Each
appreach has its advantages and disadvantages.

Reactive controllers are fast, simple, and are based on a priori assumptions and perhaps expert rules. They are primarily
sensor-based and have no need for a world model because their actions are taken in response to real-time sensor inputs only.
This economizes on memory requirements, temporal data processing, and deliberative computations. It also makes them quick
to adapt to changing environments, since the only environment they recognize is what curreatly appears at their sensor ports.
On the other hand, they tend to repeat past mistakes and have no ability to take advantage of even the simplest learning
techniques. It is difficult for them to perform goal-oriented actions in complicated environments. Furthermore, it is unclear
whether an algorithmic design procedure is possible for the creation of reactive rule bases, because their actions are modulated
by the current state of the environment and other agents.
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Planning systems can tetter choose behaviors geared toward long-term rewards. They have long-term memory that can be used
to represent their environment. They can process alternatives with symbolic manipulation and arrive at correct decisions that
may be impossible with fixed rules and local senses. They can anticipate their consequences, evaluate their progress, and plan
future actions. However their goal-motivation may make them situation-insensitive. Sensor input may be devalued in favor of
their world models, and they therefore may be slow in adapting to a changing environment. Their world model itself may be
laxing 1o acquire, maintain, and reconcile with contingencies.

A reasonable compromise for a practical control system is some sort of adaptive combination of the two approaches: a
controller that follows stimulus/response rules at low levels of competence, such as in an execution laver, but which still allows
the potential for planning, learning, and prediction. The reactive behaviors should be learned and evaluated on-line. Such a
capability is potentially embodied in the learning classifier system (LCS) {3, 6].

An LCS is a computing machine that uses the architecture of a rule-based system, but also allows for memory and learning. It
allows a user to parametrically tune it to weight its reactive vs. planning characteristics, thersby making it more or less goal-
oriented or situation-oriented. Furthermore, the LCS functions as a modular, message-passing controiler, so that data
transmission is encapsulated in low bandwidth signals that simplify communications. In an intelligent agent, this characteristic
allows us to construct behavioral modules that pass discrete messages with consistent formats. In this way, the LCS functions
much like an object-oriented program (OOP), and indeed, OOPs are a favored simulation tool for their study. This feature also
makes the LCS potentially extensible into multiple-agent domains.

In this paper, we will review the structure and operation of the learning classifier system and apply it to the learning control of a
simple mobile robot performing as an animat. This controller will have to learn to interpret sensor data, drive the robot
purposefully toward a goal, and avoid obstacles en route. We show that the learning properties of the classifier system enable us
to build fast, sparse stimulus/response rule bases with default hierarchies. We also propose a distributed architecture for
populations of such robots in message-passing environments. Simulation studies show that the LCS can provide adaptive
controllers that are in some ways simpler than even deterministic Boolean functions.

1.2 Past Work

The need for learning techniques for the generation of reactive behaviors has been widely recognized recently. Among these,

Kube (8, 9], used an adaptive logic network to leamn the structure of a combinational logic circuit that controls the movement of

muitiple mobile robots. Ram (11] and Sims [14] both used genetic algorithms to learn reactive behaviors, with [14] taking the
addiuonal step of combining the structure of the robot into the evolutionary process along with the conuroller. An advantage of
using the genetic aigorithm is that the system remains continuaily adaptive and can adjust through incremental changes in
suucture and function. It aiso allows the designer to impose arbitrary expert rules on the system as constraints or defaults, and
to preserve them under evolutionary operators through elitism {10].

Leaming classifiers themselves have been used to control the behavior of animats, most directly by Wilson [16], and Dorigo {4].
Wilson proposes the environmental reward technique that we adapt for this paper, but shows experiments for the learning of a
‘ogic function only (the muitiplexer problem). Dorigo uses the classifier system to track a moving target, and shows some
behaviors consistent with predictive abilities in the learned behavior.

Our approach is closest to that of Husbands [7] and Wilson {16], as we apply the LCS to an animat model in a static
eavironment. Our main contribution here is to show evidence that in such a situation, reactive learning is effective without
planning abilities, and that a fast learning algorithm can economize on even deterministic logic. We also demonstrate that the
transient-message-passing nature of the LCS extends directly to multiple agents, so that the same control architecture might be
used in arbitrarily sized populations.

1.3 Review Of Learning Classifier Systems

The learning classifier system was developed by Holland and his associates after the effectiveness of the genetic algorithm had
bezn established [3, 6]. The LCS combines genetic operators and apportionment of credit schemes together with an architecture
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that facilitates implementations in physical devices such as robots equipped with sensors. actuators, and processors.  Given
below is our formalism for the LCS. ”

The overall arrangement of the LCS is shown in Figure 1. It consists of a set C = {Ci}, i=1,....n of classifiers each with x
(k 21) conjunctive condition words ¢, and a single action word a. At an iteration time , each classifier C, is therefors
represented by a (k + 1) - tuple of words, G () = (1 (0).eenrcp (1), a, (1)) . Each of these words is a string of length / with
elements taken from the set {0,1,#}.

Separate from this is the message board, which at all times consists of at most messages, M(t) = {m(t),...,m,(t)}. Each
message is a single word of the same length, /, and consists of elements from the set {0,1}.

A data path exists from the action words of the classifier list to the message board. Execution in its simplest form proceeds as
each classifier compares its conditions to the message board. A condition ¢, is said to match a message m,, denoted

¢y () =m,(t), if each 0 and 1 in ¢; has an equal bit in the same position in m,, and the #-symbols act as don't cares. An
eligibility index set £ is created that contains a list of the classifiers C; for which all conditions are matched by at least one
message in VM ie., E(¢) = {ite;(6) = my(t) forallj = 1,...,kand any p} .

strengths y

message caonditions actions
board

“ supplier
list /

AREE '
input apportionment ] rule inot::"r?:ée
interface of credit / discovery
i reinforcement ]

|

Figure 1: The architecture of the learning classifier system.

environment

In conjunction with each rule is a strength value that signifies the overall merit of the rule over its lifetime. The use of the
suength value varies with the implementation of the apportionment of credit and reinforcement components, but it can always
be interpreted as a relative figure of merit.

Also necessary is a supplier list L(t) = (Ly(t),..., Ly()) of length m, which contains integers denoting the identity of the
classifier that posted the corresponding message at the previous time step ~ for each J=Le,m, Li(t)=i, where
m;(¢) = a;(t - 1). These are known as the suppliers of those messages. This list will later allow a classifier to know which of
its counterparts posted a message that now matches one or more of its conditions. In the case that message j was posted by the
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sensor interface, a special symbol (such as 0) may be entered in £ that conveys this information. This will enable us to create
the sets of supporters that will be important for our apportionment of credit scheme.

It is generally desirable to have fewer messages than eligible classifiers: m < E', where £ s the cardinality of the set £(r).
We therefore will require an arbitration mechanism that decides which of the classifiers in £(¢) is allowed to post its action on
the message board. Known as roulette-wheel selection, classifiers are selected from L{¢) to post their actions probabilistically,

with max(m, Z°) classifiers chosen according 1o a bid value associated with each classifier. Classifier /'s bid, B,(¢), isa figure

of merit that may encompass several factors, including its strength. In order to generate a new message board at time ¢, the
roulette-wheel algorithm simply chooses elements of E(t) where the probability of being selected is

. B; (1)
pi) = —=—r ¢y
2.5,
JeE(t)
or, using the Boltzmann distribution,

15 (D)

ZeTEj(r)

Je£()

pi)=

where the "temperature” parameter T allows us to control the likelihood of allowing low-bidding rules to post. This selection
mechanism is sometimes referred to as the conflict resolution component of the classifier system.

The message board at the next time iteration consists of all sensor messages and the action parts of all classifiers so chosen. We
will call this set of winning classifiers C .

Messages may be thus posted by the classifiers themselves, or they may be derived from a sensor interface. Such an interface
might interpret raw sensor data and set appropriate bits in a message. These messages generally are not subject to the roulette
wheel competition with the actions of the classifiers, because sensor data may be necessarily accessible at any time. In practice,
the number of sensors will dictate the minimum allowable length / for the messages’ .

A counterpart to the sensor interface is the effector interface. This interface recognizes postings that have a true output tag
(pre-specified bit position(s)), and routes them instead to a set of acruators. Optionally, the outputs may go to both the effector
interface and the message board. in order that classifiers may see the current state of the actuators.

1.3 Apportionment of Credit and Reinforcement

The apportionment of credit block in the diagram can take a number of forms, As originally proposed by Holland, this was the
so-called bucket-brigade aigorithm (BBA). The BBA is a mechanism by which a classifier selected to post an action pays for
this privilege by sharing its strength with those classifiers that previously posted messages that now enable it; i.e., its
supporters, determined from the list of suppliers posted along with the message board. (The distinction between a supporter
and a supplier is that every classifier that posts to the message board is a supplier, but only those that enable a winning
classifier at the subsequent time are supporters.)

Further, the BBA provides that the actual bid be a scaled product of a classifier's strength, its specificity, and its support. The
specificity is the fraction of non-don't cares in the rule, thereby weakening defauit rules. The support is the sum of the strengths
of the classifier's supporters. This encourages rules that are triggered by other rules that are themselves relatively strong.
Details of the BBA algorithm may be found in (2, 3, 6, and 13]. In principle, the BBA emulates a consumer/supplier economy

AT da L

* An alternative to this designation that we have recently adopted is to concatenate each sensor input string with an internally posted message.
This makes ail messages a consistent format (part sensor / part internal message) and ensures that an external action may always be taken

simuitaneously with an internal message posting.
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that encourages backward-chained sequences of rules, thus accomplishing goal-orientedness. The reinforcement component is
primanily responsible for encouraging situation-orientedness. .

The reinforcement component is closely tied to the environment, and may also use an intelligent tutor or critic.  This
component adjusts the strength value of each rule according to the immediate payoff as determined by the evaluation of actions
as they are taken. For example, a reward schedule may be set up to highly reward progress toward a goal and penaliza
proximity to a hazard. More elaborate reinforcement schemes may also be designed that reward all rules similar to [16] a
winning rule, or penalize rules that have not fired in a long time (via taxes). Because this reinforcement compceaent

>

suengthens rules for taking appropriate actions in each situation, it is most useful for encouraging situation-orientedness,

1.4 Discovery Component

The discovery component can take many forms also. Most often, it consists of a set of genetic or evolutionary operators that
adjust and create rules using the strength as the "goodness of fit" value. We employ the most common of these, which are
crossover and mutation. We also use elitism, which prevents good rules from being destroyed by the random evolutionary
operators [10].

Each time a new rule s created by the evolutionary operators, an old one is replaced so that the size of the rule base remains
nstant. Selection of the weak rules for replacement is performed by the same roulette-whes] selection (equation (1)) as for the
selection of eligible rules for action posting, except that reverse strengths are used.

2. THE LCS AND THE ANIMAT PROBLEM

The term animat, as used by Wilson [16], refers to an autonomous mobile agent that lives in an unstructured environment. Its
goal is to travel from a starting point to a goal site while avoiding obstacles en route. While best imagined as a mobile robot,
the concept effectively serves as a model for arbitrary problems in state spaces, and in particular, Markov decision processes.

For our purposes, we create the animat from a differentiaily steered mobile robot model. Figure 2 shows the model and the
kinematics. We use realistic kinematics for the motion of the vehicle rather than the cell-stepping model in other works not
only because it is more physically accurate, but because it requires no tesseilation of the state space and may preserve the real
dynamics of the robot. The robat has two actuators, one on each side of the vehicle, and four sensors. The sensors each have a
detection range, shown in the figure to be larger for goal detection than obstacle detection. It is assumed that the robot has no
knowledge of any inertial referencs frame, so that all of its measurements are refative to itself. The motion of the robot is
described by the set of equations:

1
Veoboe = 'Z‘(Vngh! + Vleﬂ) )

s 1
9= Vrghe =Viep)

with the constraint that Viobor is in the direction 8 . Equations (3) may be discretely approximated to give estimated position p
and orientations 8 :

Probor (1) Z Prapor (6= 1)+ = Wngye (£ = ) +Vjga (¢ = ) o

80 26t =)+ = Vg (£ = ) = Vipp (¢ - )
where t is the size of the time-step. Note that the robot cannot measure its own position and orientation; only their derjvatives.
These equations are used for simulation purposes. ‘
With this model for the robot, we will seek a rule-based controiler that reads the sensor signals and produces proper (on/off)

actuator outputs. This controller will not initially know even the kinematics of the robot; e.g., it will not know that turning oa
the left motor will cause it to tum right or that turning on both motors will cause it to go forward. This knowledge will have to
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be learmed. Furthermore, the robot will have ta learn to navigate in its world of goal and obstacles. Fesdback to enable both of
these learning behaviors will come from the sensors. However, while the classifier system's input interface will tell the
controller only binary information (object/no object) from the detection region, the environmental reward component will have
analog data on the distance to the goal and from the nearest obstacle (provided they are within the detection region). Thus the
reward can be based on proximity values. The rules fire in response to object detectors, while the reward utilizes object range
- sensors. Note that our sparse, low-resolution sensor data will result in perceprual aliasing [15], so that the robot will have
- difficulty distinguishing different world-states. This is intentional and, we believe, realistic.

Sensing Regians:

laft gaal sensor right goal sensor

latt cbstacie sensar right obstacle sensor

Figure 2: Sensor and kinematic models for the animat-robot. Modeled after ultrasonic and infrared sensors, respectively, the
goal sensors have a much larger range than the obstacle detectors, and both sensor ranges overlap dead-ahead (so that the robot
is not doomed to a life of tacking back and forth as it travels.)

2.2 Application of the Deterministic Classifier System

As a preliminary baseline experiment, we first show how this problem can be soived with a fixed rule base that implements
3oolean logic. This will give a deterministic classifier system that uses no bucket brigade. This hand-coded classifier system
<an be represented by the equations:

leﬁ_ wheel = S + 3283 + 3'.1-?2

)

right wheel = 5355 + 5,5, + 553 + 55
whers 59, 51, 5, and 57 denote, respectively, the right and left goal sensors, and the right and left obstacle sensors.
o implement these functions in the deterministic classifier, we will use / =6, k=1, m =1, with the only message on the

Tiessage board being reserved for the sensors, and all postings going directly to the output. The format for the condition/action
suings are shown in Figurs 3:

condition/action strings
X X s3 s2 S1RW sow
S, e ¥
[o.0) msgq, from sensors 5%
® i 01 msg. to actuators i
"tag” bits: X reserved tags k3

igure 3: Word formats for the condition string and action string. Unused bit positions may be reserved for use in future tags,
uch as might indicate whether a message was posted by a classifier or a sensor.
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With this format, one can show that the system of the following seven classifiers in Table | successtully implements the
Boolean functions )

actions
conditions (rightmost two bits posted
to actuators (on/off))

0O Jo Jo |# 1# Jo llo 1 L ENE N
10 [oJo 1 (#2011 = 17Tz 14
0 10 [# Jo [1 J# 1011 % T# T# 17
O 10 1# |1 1# o lfo |1 L NENE
C 10 1# 1# I# |1 [0 |1 7 |# |1 #
{10 |1 O /# (# o |1 [# [# 11 #
0 {0 i# JoJo |[# llo 1 1# [# |1 #

Table 1: The fixed, deterministic classifiers that im
represent the logic for the left wheel, and the last

When this fixed classifier controller is execu
Applied to an animat problem with a single
Note again that these rules are fixed and there is neither an environmental reward, buc
effect. The purpose of this exercise is not only

"optimal” animat behavior for future comparison.

plement the Boolean logic of equations (5). The first four classifiers
three give the right whesl.

ted, the seven classifiers in Table 1 become the rules in a reactive controller.
goal and two wall-shaped obstacles, we

get the behavior depicted in Figure 4a,

ket brigade, nor discovery component in
to demonstrate the performance of the classifier architecture, but to show an

@ (b)
500 500
ol —./ ) V—
‘,/" /
,-"'—/ &fr
-500 -500
-500 0 5Q0 -500 0 500
(c) (d)
500 500 ]
A x
Ot Y Of d’
P
-500 2 -500—=
-500 0 500 -500 0 500

Figure 4: Four tral runs of the LCS (without bucket

deterministic classifier given in table 1.
lower left position to the star at the upper right,
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3. USING THE LEARNING CLASSIFIER

Given the performance of the deterministic classifier as seen in Figure 4a, one would expect that a learning classifier might
arrive at a similar set of rules after experimentation. Although the deterministic control rules generated (3) were not a unique
choice, we can follow the lead of past literature and consider them a "correct” set by which to measure the learned classifiers
(15, 16]. The goal of this experiment is to learn to choose a suitable set of learning parameters, including the genetic operator
propabilities and the environmental reward/penalty functions, and then analyze the rules that result. We might guess,
incorrectly’, that when the classifier system has learned to guide the animat to the goal, that we might "read" the classifiers in
the list, translated by the word format of Figure 3, and derive Boolean logic similar to equations (5). A similar end resuit was
produced with an "adaptive logic network” in (8, 9].

Because we are temporarily investigating the learning of a combinational logic function, we eliminate any sequential processing
by turning off the bucket brigade. We will againuse /=6, k=1, m=1,and n=32. We will initialize these 32 classifiers

with random arrangements from {0,1,#} (except for the fixed "tag" columns which remain invariant even under genetic
operations). We use a (dimensionless) step size of t = 15 and a robot radius of » = 1.

When any classifier posts an action to the output interface (which happens in this case at every iteration. since there are no
posts to the message board), a payoff value v is computed according to:

v=3 Wgoal (3fgoa1 - 1)+-5;Vangla (Bfangle =D =Werasi Serash

where Wooai, Wingie, and W, are, respectively, chosen reward amounts for moving closer to the goal, pointing more directly

at the goal, and crashing into an obstacle. Flags f, goal» Sangie» 30 forq,n are set to 1 if these three conditions are detected; 0

otherwise. The first two terms of the function above reflects a reward of ¥ if a good condition is achieved, and a penaity of
0.5/ if the result is bad. Crashing is always penalized.

Whenever an action is taken, a set 4 is created using the posting classifier(s) C as follows:
A=Enfi:a; =a, foranyC, eC}

Then we use the reward distribution function to adjust the stwrength S; of each classifier:

Sit-1+—=
Si(t) = A
Si(t=D-(1=W,p) ified

where 1, is a penalty factor that is (optionally) used to penalize classifiers that are in E, (their conditions match the sensors),
but whose actions are not the same as the winners' actions. In the experiments given here, we use Woen =0, with the

reasoning being that we prefer to encourage the emergence of diverse classifiers relevant to any input, rather than force
classifiers to agree on an output in response to a particular input.

ror the discovery component, we apply mutation and crossover every 50 iterations, so that the reward component has sufficient
ume to separate good rules from bad ones between genetic operations. To perform discovery, we select one parent C based on

* The classifier is "sub-symbolic,” meaning that it learns rules that are unconstrained by any syntax that the user is prepared to translate into
Zngiish. One may look at an operational LCS and not be able to decipher its rules.
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roulettz-wheel selection considering the strengths of the classifiers. We then, with probability %, select a second parent C,
again using the roulette wheel. If a second parent is chosen. a crossover is performed between Cy and Cs ar a random bit
position. If no second parent is selected, the first parent is merely replicated. The offspring C,,,, is then provided an initial

strength by sharing the strengths equally with its one or two parents. It is used to replace a weak classifier by roulette-wheel
selection based on a fitness vector max(Sj (1)) = S;(t) . This prevents the strongest classifiers from being killed to make room
J

for a mere mutation.

Mutation is then performed, bit-wise, on the entire set C, with probability w. This mutation is three-way, such thata 0 might
remain 0 (with probability | - u ), or with probability u, become a 1 or # (50% chance of each).

4. SIMULATION RESULTS

Shown in Figures 4(b—d) are three trial runs of the learning classifier system controlling the animat to reach the goal. These
are typical trial runs and show behavior similar to the hand-coded version (Figure 4(a)). In (b—d), all rules are initialized at
random.

5. EXPERIMENTAL RESULTS

To test real-time performance and the effects of sensor and actuator errors, a learning classifier system was programmed to
control Curly, a modified RWT B12 robot {12]. Curly is outfitted with a Motorola 68HC11 based microcontroller with 32K of
external RAM for programming. It has a different set of sensors than the simulated model: First, it has three diffuse-reflective
obstacle detectors with ranges of approx. 10cm, mounted at dead-center and approx. 30° to either side. It also has a long-range
infrared detector that detects only modulated infrared from a special source. This source "beacon" represents the goal and emits
IR at 40 KHz modulated by 160 Hz. Last, it has an ultrasonic range finder mounted so that it points in the same direction as
the beacon detector. This sensor is used by the reinforcement component to determine progress toward the goal, but its range
readings are not available to the LCS, thereby making the sensing resolution of Curly roughly equivalent to the simulated
model. Figure 5 shows Curly's sensor apparatus.

IR obstacle
detectors (T 10cm)

B12

robot uitrasonic range

sensor (" 10m)

Figure 5. Curly, the modified B12, with sensor ranges.

The LCS is surprisingly simple to program on a real robot, and can be done with few lines of assembly or C code. Most of the
extensive programming necessary for the simulation runs was in simulating the robot itself and its environment, as well as a
user interface [5]. The actual mechanism of the classifier system (Figure 1) is quite efficient, with the genetic algorithm being
probably the most time<consuming. We note that Curly is not a treaded vehicle, as is the simulated model, but is instead
synchro-drive. The natural outputs are therefore not right_wheel and left_wheel, but translate and rotate. The
conuroiler, although it now writes to these two actuator behaviors, is unaltered. Sensorimotor behaviors are learned entirely
from uninterpretted data, so the new kinematics are learned automaticaily.
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With an LCS programmed on Curly, Figure 6 shows a representative search trial. Tapulated data over many trial runs is not
presented here because the variance of the results (number of Steps to reach the goal) is very high, and few trends, as vet, are
apparent. Experiments are now underway to repeat the trials with an operational BBA and with Q-learning in the hopes that a
leaming curve will be more readily apparent,

=T
/ [ .0
P

]

N

T . Robat's initial \
; position.
Ve l\:-'
AsTows indicate
direction /,

—T "~

Figure 6. Tral run for 3 mobile robot in an unknown, unstructured environment. The environment is a cluttered laboratory
with rectangular and ellipsoidal obstacles.

6. THE DISTRIBUTED LEARNING CLASSIFIER SYSTEM

A popular extension to reactive mobile robot controllers is the concept of a distributed network of mobile robots. With this in
mind, we propose the distributed learning classifier system (DLCS). The DLCS is designed with the primary constraints that i)
communications should be kept to an absolute minimum in order to avoid exacerbating 2 combinatorial explosion in overhead
and routing requirements, and /) communications should be limited to sporadic, self-contained messages of fixed format that

may be addressed to any individual or simply broadcast to the population as a whole. It is widely noted that simple broadcast

communications can be very useful in multi-robot coordination {1].

- The architecture we propose is depicted in Figure 7 below. In the architecture, two extra connections are added to the separate
learning classifier systems. First, a transmit queue is offered as a third option for output messages. That is, actions may be
posted to the internal message board, to the output interface, or to the transmit queue, which places it on the communications
medium. Second, a receive queue is added to the message board so that it can take data from the input interface or classifier
list, as before, or from the communications bus.

if the assumed communications medium is perfect, this architecture may be viewed as a concatenation of each message board
and each classifier list, since all postings to or from one are available to another. The DLCS would thus act as a single,
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distributed classifier system. In reality, though, the communications channel is a protected resource, and it may not even be
desirable for all classifiers to be so tightly coupled. An alternative would therefore be a rationing of the communications
channel such that each classifier performs its duties as an individuai, but selected (i.e., particularly strong) classifiers could
share actions with others through net broadeast. A second opten, which implements the "learning by watching” paradigm fcor
distributed learning [15] would be to allow entire rules (condition and action) to be shared, based on their relative strengths.
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Figure 7. Architecture of the DLCS. Agents may selectively post to and read from the communications channel, implemented
as a distributed message board.

Such 2 DLCS is currently under study and is being adapted to a number of distributed optimization problefns as well.
Simulations with muitiple mobile robots are presented in [5]. i

7. CONCLUSIONS

Although it is clear that the LCS forms an appropriate architecture for the execution of reactive rules in mobile robots. real- |
warld experiments are inconclusive as to its learning powers. Although the simulated behavior was quite successful,
experiments with real robots shows a very weak learning curve. We note, however, that persistent learning is due, in part, to a
successful apportionment of credit component, which we have not used in this study. Part of the reascn for this was our
observation, under simulated scenarios, that the BBA successfully maintains a sequence of classifiers whose actions are
appropriately rewarded, but it is not very good at working in conjunction with the discovery component to generate viable
sequences. There are some indications that evolution of feams of rules and specialized evolutionary operators may be more
useful in this regard (2, 13]. '

Instead, an analysis of the strengths vs. time for individual rules (not shown here) indicates that rules live a relatively short life
under the evolutionary operators. Our robot lives in a sensory-sparse environment and uses a fast rate of learning (high
mutation probabilities of 0.1 - 0.3) to generate strong rules that "live for the moment.” At any given time, only two or three
tules, on average, have significant strengths, after which. their usefulness wanes, they die and are quickly replaced. We
therefore observe that we may use considerably fewer than the number of deterministic hand-coded Boolean rules (seven)
needed in our example, as long as we trade them when they become irrelevant. The robots with this controller are extremely

situation-oriented.

Future work is concentrating on the DLCS, as this is an entirely unexplored area for multiple agent coordination. The
inherently message-oriented nature of the system translates directly to existing communications protocols, and promises speed-
up through parallelism for computational optimization tasks in general.
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